931 resultados para GLASS-TRANSITION TEMPERATURE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A necessidade de produção de dispositivos eletrónicos mais eficientes e a sua miniaturização tem sido um dos principais desígnios da indústria eletrónica. Assim surgiu a necessidade de melhorar o desempenho das designadas placas de circuito impresso, tornando-as simultaneamente mais flexíveis, com menos ruído, mais estáveis face a variações bruscas de temperatura e que permitam operar numa vasta gama de frequências e potências. Para tal, uma das estratégias que tem vindo a ser estudada é a possibilidade de incorporar os componentes passivos, nomeadamente condensadores, sob a forma de filme diretamente no interior da placa. Por forma a manter uma elevada constante dielétrica e baixas perdas, mantendo a flexibilidade, associada ao polímero, têm sido desenvolvidos os designados compósitos de matriz polimérica. Nesta dissertação procedeu-se ao estudo do comportamento dielétrico e elétrico da mistura do cerâmico CaCu3Ti4O12 com o copolímero estireno-isoprenoestireno. Foram preparados filmes com diferentes concentrações de CCTO, recorrendo ao método de arrastamento, em conjunto com o Centro de Polímeros da Eslováquia. Foram também preparados filmes por spin-coating para as mesmas concentrações. Usaram-se dois métodos distintos para a preparação do pó de CCTO, reação de estado sólido e sol-gel. Foi realizada a caraterização estrutural (difração de raios-X. espetroscopia de Raman), morfológica (microscopia eletrónica de varrimento) e dielétrica aos filmes produzidos. Na caracterização dielétrica determinou-se o valor da constante dielétrica e das perdas para todos os filmes, à temperatura ambiente, bem como na gama de temperatura entre os 200 K e os 400 K, o que permitiu identificar existência de relaxações vítreas e subvítreas, e assim calcular as temperaturas de transição vítrea e energias de ativação, respetivamente. Foram realizados testes de adesão e aplicada a técnica de análise mecânica dinâmica para o cálculo das temperaturas de transição vítrea nos filmes preparados pelo método de arrastamento. Estudou-se ainda qual a lei de mistura que melhor se ajusta ao comportamento dielétrico do nosso compósito. Verificou-se que é a lei de Looyenga generalizada a que melhor se ajusta à resposta dielétrica dos compósitos produzidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biorefinery concept has attracted much attention over the last decade due to increasing concerns about the use of fossil resources. In this context emerged the use of bioplastics, namely polyhydroxyalkanoates (PHA). PHA are biocompatible and biodegradable plastics that can be obtained from renewable raw materials and can constitute an alternative solution to conventional plastics. In this work, hydrolysed cellulose pulp, coming from Eucalyptus globulus wood cooking, was used as substrate to the PHA-storing bacteria Haloferax mediterranei. The hydrolysed pulp is rich in simple sugars, mainly glucose (81.96 g.L-1) and xylose (20.90 g.L-1). Tests were made in defined medium with glucose and xylose and in hydrolysate supplemented with salts and yeast extract. Different concentrations of glucose were tested, namely 10, 15, 20, 30 and 40 g.L-1. The best accumulation results (27.1 % of PHA) were obtained in hydrolysate medium with 10 g.L-1. Using this concentration, assays were performed in fed-batch and sequencing batch reactor conditions in order to determine the best feeding strategy. The strategy that led to the best results was fed-batch assay with 24.7 % of PHA. An assay without sterile conditions was performed, in which was obtained the same growth than in sterilization test. Finally it was performed an assay in a bioreactor and a fast growth (0.14 h-1) with high glucose and xylose consumption rates (0.368 g.L-1.h-1 and 0.0947 g.L-1.h-1, respectively) were obtained. However 1.50 g.L-1 of PHA, corresponding to 16.1 % (92.52 % of 3HB and 3HV of 7.48 %) of % PHA were observed. The polymer was further characterized by DSC with a glass transition temperature of -6.07 °C, a melting temperature of 156.3 °C and a melting enthalpy of 63.07 J.g-1, values that are in accordance with the literature. This work recognizes for the first time the suitability of the pulp paper hydrolysate as a substrate for PHA production by H. mediterranei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber reinforced composite tanks provide a promising method of storage for liquid oxygen and hydrogen for aerospace applications. The inherent thermal fatigue of these vessels leads to the formation of microcracks, which allow gas phase leakage across the tank walls. In this dissertation, self-healing functionality is imparted to a structural composite to effectively seal microcracks induced by both mechanical and thermal loading cycles. Two different microencapsulated healing chemistries are investigated in woven glass fiber/epoxy and uni-weave carbon fiber/epoxy composites. Self-healing of mechanically induced damage was first studied in a room temperature cured plain weave E-glass/epoxy composite with encapsulated dicyclopentadiene (DCPD) monomer and wax protected Grubbs' catalyst healing components. A controlled amount of microcracking was introduced through cyclic indentation of opposing surfaces of the composite. The resulting damage zone was proportional to the indentation load. Healing was assessed through the use of a pressure cell apparatus to detect nitrogen flow through the thickness direction of the damaged composite. Successful healing resulted in a perfect seal, with no measurable gas flow. The effect of DCPD microcapsule size (51 um and 18 um) and concentration (0 - 12.2 wt%) on the self-sealing ability was investigated. Composite specimens with 6.5 wt% 51 um capsules sealed 67% of the time, compared to 13% for the control panels without healing components. A thermally stable, dual microcapsule healing chemistry comprised of silanol terminated poly(dimethyl siloxane) plus a crosslinking agent and a tin catalyst was employed to allow higher composite processing temperatures. The microcapsules were incorporated into a satin weave E-glass fiber/epoxy composite processed at 120C to yield a glass transition temperature of 127C. Self-sealing ability after mechanical damage was assessed for different microcapsule sizes (25 um and 42 um) and concentrations (0 - 11 vol%). Incorporating 9 vol% 42 um capsules or 11 vol% 25 um capsules into the composite matrix leads to 100% of the samples sealing. The effect of microcapsule concentration on the short beam strength, storage modulus, and glass transition temperature of the composite specimens was also investigated. The thermally stable tin catalyzed poly(dimethyl siloxane) healing chemistry was then integrated into a [0/90]s uniweave carbon fiber/epoxy composite. Thermal cycling (-196C to 35C) of these specimens lead to the formation of microcracks, over time, formed a percolating crack network from one side of the composite to the other, resulting in a gas permeable specimen. Crack damage accumulation and sample permeability was monitored with number of cycles for both self-healing and traditional non-healing composites. Crack accumulation occurred at a similar rate for all sample types tested. A 63% increase in lifetime extension was achieved for the self-healing specimens over traditional non-healing composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New and promising treatments for coronary heart disease are enabled by vascular scaffolds made of poly(L-lactic acid) (PLLA), as demonstrated by Abbott Vascular’s bioresorbable vascular scaffold. PLLA is a semicrystalline polymer whose degree of crystallinity and crystalline microstructure depend on the thermal and deformation history during processing. In turn, the semicrystalline morphology determines scaffold strength and biodegradation time. However, spatially-resolved information about the resulting material structure (crystallinity and crystal orientation) is needed to interpret in vivo observations.

The first manufacturing step of the scaffold is tube expansion in a process similar to injection blow molding. Spatial uniformity of the tube microstructure is essential for the consistent production and performance of the final scaffold. For implantation into the artery, solid-state deformation below the glass transition temperature is imposed on a laser-cut subassembly to crimp it into a small diameter. Regions of localized strain during crimping are implicated in deployment behavior.

To examine the semicrystalline microstructure development of the scaffold, we employed complementary techniques of scanning electron and polarized light microscopy, wide-angle X-ray scattering, and X-ray microdiffraction. These techniques enabled us to assess the microstructure at the micro and nano length scale. The results show that the expanded tube is very uniform in the azimuthal and axial directions and that radial variations are more pronounced. The crimping step dramatically changes the microstructure of the subassembly by imposing extreme elongation and compression. Spatial information on the degree and direction of chain orientation from X-ray microdiffraction data gives insight into the mechanism by which the PLLA dissipates the stresses during crimping, without fracture. Finally, analysis of the microstructure after deployment shows that it is inherited from the crimping step and contributes to the scaffold’s successful implantation in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of raw materials from renewable sources for production of materials has been the subject of several studies and researches, because of its potential to substitute petrochemical-based materials. The addition of natural fibers to polymers represents an alternative in the partial or total replacement of glass fibers in composites. In this work, carnauba leaf fibers were used in the production of biodegradable composites with polyhydroxybutyrate (PHB) matrix. To improve the interfacial properties fiber / matrix were studied four chemical treatments to the fibers..The effect of the different chemical treatments on the morphological, physical, chemical and mechanical properties of the fibers and composites were investigated by scanning electron microscopy (SEM), infrared spectroscopy, X-ray diffraction, tensile and flexural tests, dynamic mechanical analysis (DMA), thermogravimetry (TGA) and diferential scanning calorimetry (DSC). The results of tensile tests indicated an increase in tensile strength of the composites after the chemical treatment of the fibers, with best results for the hydrogen peroxide treated fibers, even though the tensile strength of fibers was slightly reduced. This suggests a better interaction fiber/matrix which was also observed by SEM fractographs. The glass transition temperature (Tg) was reduced for all composites compared to the pure polymer which can be attributed to the absorption of solvents, moisture and other low molecular weight molecules by the fibers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the discovery of bulk metallic glasses with exceptional properties has generated much interest. One of their most intriguing features is their capacity for viscous flow above the glass transition temperature. This characteristic allows metallic glasses to be formed like plastics at modest temperatures. However, crystallization of supercooled metallic liquids in the best bulk metallic glass-formers is much more rapid than in most polymers and silicate glass-forming liquids. The short times to crystallization impairs experimentation on and processing of supercooled glass-forming metallic liquids. A technique to rapidly and uniformly heat metallic glasses at rates of 105 to 106 kelvin per second is presented. A capacitive discharge is used to ohmically heat metallic glasses to temperatures in the super cooled liquid region in millisecond time-scales. By heating samples rapidly, the most time-consuming step in experiments on supercooled metallic liquids is reduced orders of magnitude in length. This allows for experimentation on and processing of metallic liquids in temperature ranges that were previously inaccessible because of crystallization.

A variety of forming techniques, including injection molding and forging, were coupled with capacitive discharge heating to produce near net-shaped metallic glass parts. In addition, a new forming technique, which combines a magnetic field with the heating current to produce a forming force, was developed. Viscosities were measured in previously inaccessible temperature ranges using parallel plate rheometry combined with capacitive discharge heating. Lastly, a rapid pulse calorimeter was developed with this technique to investigate the thermophysical behavior of metallic glasses at these rapid heating rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Instituto de Química, Curso de Pós-Graduação em Química, 2016.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Honey is rich in sugar content and dominated by fructose and glucose that make honey prone to crystallize during storage. Due to honey composition, the anhydrous glass transition temperature of honey is very low that makes honey difficult to dry alone and drying aid or filler is needed to dry honey. Maltodextrin is a common drying aid material used in drying of sugar-rich food. The present study aims to study the processing of honey powder by vacuum drying method and the impact of drying process and formulation on the stability of honey powder. To achieve the objectives, the series of experiments were done: investigating of maltodextrin DE 10 properties, studying the effect of drying temperature, total solid concentration, DE value, maltodextrin concentration and anti-caking agent on honey powder processing and stability. Maltodextrin provide stable glass compared to lower molecular weight sugars. Dynamic Dew Point Isotherm (DDI) data could be used to determine amorphous content of a system. The area under the first derivative curve from DDI curve is equal to the amount of water needed by amorphous material to crystallize. The drying temperature affected the amorphous content of vacuum-dried honey powder. The higher temperature seemed to result in honey powder with more amorphous component. The ratio of maltodextrin affected more significantly the stability of honey powder compared to the treatments of total solids concentration, DE value and drying temperature. The critical water activity of honey powder was lower than water activity of the equilibrium water content corresponding to BET monolayer water content. Addition of anti-caking agent increased stability and flow-ability of honey powder. Addition of Calcium stearate could inhibit collapse of the honey powder during storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The toughness of high-density polyethylene (HDPE)/glass-bead blends containing various glass-bead contents as a function of temperature was studied. The toughness of the blends was determined from the notch Izod impact test. A sharp brittle-ductile transition was observed in impact strength-interparticle distance (ID) curves at various temperatures. The brittle-ductile transition of HDPE/glass-bead blends occurred either with reduced ID or with increased temperature. The results indicated that the brittle-ductile-transition temperature dropped markedly with increasing glass-bead content. Moreover, the correlation between the critical interparticle distance (ID.) and temperature was obtained. Similar to the ID, of polymer blends with elastomers, the ID, nonlinearly increased with increasing temperature. However, this was the first observation of the variation of the ID, with temperature for polymer blends with rigid particles. (C) 2001 John Wiley & Sons, Inc. J Polym. Sci Part B: Polym. Phys 39: 1855-1859, 2001.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study very large sizes, 483. A finite-size scaling analysis indicates that the data are compatible with the most economical scenario: a common transition temperature for spins and chiralities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The glass transition, whereby liquids transform into amorphous solids at low temperatures, is a subject of intense research despite decades of investigation. Explaining the enormous increase in relaxation times of a liquid upon supercooling is essential for understanding the glass transition. Although many theories, such as the Adam-Gibbs theory, have sought to relate growing relaxation times to length scales associated with spatial correlations in liquid structure or motion of molecules, the role of length scales in glassy dynamics is not well established. Recent studies of spatially correlated rearrangements of molecules leading to structural relaxation, termed ``spatially heterogeneous dynamics,'' provide fresh impetus in this direction. A powerful approach to extract length scales in critical phenomena is finite-size scaling, wherein a system is studied for sizes traversing the length scales of interest. We perform finite-size scaling for a realistic glass-former, using computer simulations, to evaluate the length scale associated with spatially heterogeneous dynamics, which grows as temperature decreases. However, relaxation times that also grow with decreasing temperature do not exhibit standard finite-size scaling with this length. We show that relaxation times are instead determined, for all studied system sizes and temperatures, by configurational entropy, in accordance with the Adam-Gibbs relation, but in disagreement with theoretical expectations based on spin-glass models that configurational entropy is not relevant at temperatures substantially above the critical temperature of mode-coupling theory. Our results provide new insights into the dynamics of glass-forming liquids and pose serious challenges to existing theoretical descriptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glasses have been prepared by conventional quenching techniques in the ternary sulphate system KzSO4-Na2SO4-ZnSO4, in the range 30-80 % ZnS04. The proportions of alkali sulphates in the glass have been varied widely. The glass formation region has been delineated and densities, refractive indices and microhardnesses have been measured. The heat capacities of the glasses have been measured over a wide range of temperature by differential scanning calorimetry. The effect of composition on molar volume, molar polarization and glass transition have been explained on the basis of a random close-packing model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors have developed a simple continuous-cooling method to determine specific heat of liquids and solids in the temperature range 100-300 K. The technique employs very simple instrumentation and continuously records the sample temperature as it cools to the bath temperature through a calibrated heat link. They have obtained specific heat values which agree with the reported data to within 3% for the samples investigated. This method also facilitates easy detection of abrupt changes in specific heat, as demonstrated in the observation of glass transition in some organic glass-forming systems. The method is sensitive to the study of relaxing heat capacity in supercooled liquids.