762 resultados para Fuzzy sphere


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho apresenta um método para detectar falhas no funcionamento de máquinas rotativas baseado em alterações no padrão de vibração do sistema e no diagnóstico da condição de operação, por Lógica Fuzzy. As modificações ocorridas são analisadas e servem como parâmetros para predizer falhas incipientes bem como a evolução destas na condição de operação, possibilitando tarefas de manutenção preditiva. Utiliza-se uma estrutura mecânica denominada de Sistema Rotativo (Figura 1), apropriada para as simulações das falhas. Faz-se a aquisição de dados de vibração da máquina usando-se um acelerômetro em chip biaxial de baixa potência. As saídas são lidas diretamente por um contador microprocessador não requerendo um conversor A/D. Um sistema de desenvolvimento para processamento digital de sinais, baseado no microprocessador TMS320C25, o Psi25, é empregado na aquisição dos sinais de vibração (*.dat), do Sistema Rotativo. Os arquivos *.dat são processados através da ferramenta matemática computacional Matlab 5 e do programa SPTOOL. Estabelece-se o padrão de vibração, denominado assinatura espectral do Sistema Rotativo (Figura 2) Os dados são analisados pelo sistema especialista Fuzzy, devidamente calibrado para o processo em questão. São considerados, como parâmetros para a diferenciação e tomada de decisão no diagnóstico do estado de funcionamento pelo sistema especialista, a freqüência de rotação do eixo-volante e as amplitudes de vibração inerentes a cada situação de avaria. As falhas inseridas neste trabalho são desbalanceamentos no eixovolante (Figura 1), através da inserção de elementos desbalanceadores. A relação de massa entre o volante e o menor elemento desbalanceador é de 1:10000. Tomando-se como alusão o conhecimento de especialistas no que se refere a situações normais de funcionamento e conseqüências danosas, utilizam-se elementos de diferentes massas para inserir falhas e diagnosticar o estado de funcionamento pelo sistema fuzzy, que apresenta o diagnóstico de formas qualitativa: normal; falha incipiente; manutenção e perigo e quantitativa, sendo desta maneira possível a detecção e o acompanhamento da evolução da falha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propõe-se com a presente dissertação conduzir estudo exploratório sobre a razoabilidade de um método de apoio à tomada de decisão para ordenar os controles internos contábeis, utilizando critérios estabelecidos pelo regulador do mercado de capitais dos Estados Unidos, quantificados por meio de uma escala baseada em operadores da lógica fuzzy. O método foi elaborado com base em pesquisa bibliográfica sobre o controle interno contábil e sua relação com os controles internos em geral; a exigência de constituição, avaliação e divulgação da avaliação dos controles internos contábeis pela legislação do mercado de capitais americano ao longo das últimas três décadas; o conceito de matriz de risco; os métodos de apoio à decisão; e os fundamentos da lógica fuzzy. A metodologia proposta foi adaptada à realidade da entidade objeto do estudo de caso e aplicada sobre 2,4 mil controles. Uma amostra de aproximadamente 14% desse universo foi analisada e permitiu concluir pela razoabilidade do método proposto, que será utilizado pela entidade estudada como parte de seu processo de avaliação dos controles internos contábeis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho tem por objetivo propor uma carteira composta por posições compradas e vendidas de ações que supere os principais Índices de mercado. O resultado é obtido através de um modelo de Lógica Fuzzy, que é um modelo de inteligência artificial que trata os dados de maneira lógica, ou seja, sem relacionar as variáveis através de modelos matemáticos convencionais. Para esse estudo utilizamos como variáveis de entrada os múltiplos Preço/Lucro Esperado e Preço/Valor Patrimonial da Empresa de cada ação considerada. Foram estudadas as ações do mercado americano pertencentes ao índice S&P 500, do ano de 2000 até 2007. Com o intuito de comparar a eficiência do Modelo de Lógica Fuzzy, utilizamos o modelo de Regressão Linear Multivariada e os índices de mercado S&P 500 e o S&P 500 com uma modificação para se adequar aos dados escolhidos para o estudo. O modelo proposto produziu resultados satisfatórios. Para quase todos os anos estudados o retorno da carteira obtida foi muito superior ao dos Índices de mercado e do modelo linear convencional. Através de testes adequados comprovamos estatisticamente a eficiência do modelo em comparação aos Índices de mercado e ao modelo linear convencional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Market risk exposure plays a key role for nancial institutions risk management. A possible measure for this exposure is to evaluate losses likely to incurwhen the price of the portfolio's assets declines using Value-at-Risk (VaR) estimates, one of the most prominent measure of nancial downside market risk. This paper suggests an evolving possibilistic fuzzy modeling approach for VaR estimation. The approach is based on an extension of the possibilistic fuzzy c-means clustering and functional fuzzy rule-based modeling, which employs memberships and typicalities to update clusters and creates new clusters based on a statistical control distance-based criteria. ePFM also uses an utility measure to evaluate the quality of the current cluster structure. Computational experiments consider data of the main global equity market indexes of United States, London, Germany, Spain and Brazil from January 2000 to December 2012 for VaR estimation using ePFM, traditional VaR benchmarks such as Historical Simulation, GARCH, EWMA, and Extreme Value Theory and state of the art evolving approaches. The results show that ePFM is a potential candidate for VaR modeling, with better performance than alternative approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a proposal to detect interface in atmospheric oil tanks by installing a differential pressure level transmitter to infer the oil-water interface. The main goal of this project is to maximize the quantity of free water that is delivered to the drainage line by controlling the interface. A Fuzzy Controller has been implemented by using the interface transmitter as the Process Variable. Two ladder routine was generated to perform the control. One routine was developed to calculate the error and error variation. The other was generate to develop the fuzzy controller itself. By using rules, the fuzzy controller uses these variables to set the output. The output is the position variation of the drainage valve. Although the ladder routine was implemented into an Allen Bradley PLC, Control Logix family it can be implemented into any brand of PLCs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From their early days, Electrical Submergible Pumping (ESP) units have excelled in lifting much greater liquid rates than most of the other types of artificial lift and developed by good performance in wells with high BSW, in onshore and offshore environments. For all artificial lift system, the lifetime and frequency of interventions are of paramount importance, given the high costs of rigs and equipment, plus the losses coming from a halt in production. In search of a better life of the system comes the need to work with the same efficiency and security within the limits of their equipment, this implies the need for periodic adjustments, monitoring and control. How is increasing the prospect of minimizing direct human actions, these adjustments should be made increasingly via automation. The automated system not only provides a longer life, but also greater control over the production of the well. The controller is the brain of most automation systems, it is inserted the logic and strategies in the work process in order to get you to work efficiently. So great is the importance of controlling for any automation system is expected that, with better understanding of ESP system and the development of research, many controllers will be proposed for this method of artificial lift. Once a controller is proposed, it must be tested and validated before they take it as efficient and functional. The use of a producing well or a test well could favor the completion of testing, but with the serious risk that flaws in the design of the controller were to cause damage to oil well equipment, many of them expensive. Given this reality, the main objective of the present work is to present an environment for evaluation of fuzzy controllers for wells equipped with ESP system, using a computer simulator representing a virtual oil well, a software design fuzzy controllers and a PLC. The use of the proposed environment will enable a reduction in time required for testing and adjustments to the controller and evaluated a rapid diagnosis of their efficiency and effectiveness. The control algorithms are implemented in both high-level language, through the controller design software, such as specific language for programming PLCs, Ladder Diagram language.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lógica fuzzy admite infinitos valores lógicos intermediários entre o falso e o verdadeiro. Com esse princípio, foi elaborado neste trabalho um sistema baseado em regras fuzzy, que indicam o índice de massa corporal de animais ruminantes com objetivo de obter o melhor momento para o abate. O sistema fuzzy desenvolvido teve como entradas as variáveis massa e altura, e a saída um novo índice de massa corporal, denominado Índice de Massa Corporal Fuzzy (IMC Fuzzy), que poderá servir como um sistema de detecção do momento de abate de bovinos, comparando-os entre si através das variáveis linguísticas )Muito BaixaM, ,BaixaB, ,MédiaM, ,AltaA e Muito AltaM. Para a demonstração e aplicação da utilização deste sistema fuzzy, foi feita uma análise de 147 vacas da raça Nelore, determinando os valores do IMC Fuzzy para cada animal e indicando a situação de massa corpórea de todo o rebanho. A validação realizada do sistema foi baseado em uma análise estatística, utilizando o coeficiente de correlação de Pearson 0,923, representando alta correlação positiva e indicando que o método proposto está adequado. Desta forma, o presente método possibilita a avaliação do rebanho, comparando cada animal do rebanho com seus pares do grupo, fornecendo desta forma um método quantitativo de tomada de decisão para o pecuarista. Também é possível concluir que o presente trabalho estabeleceu um método computacional baseado na lógica fuzzy capaz de imitar parte do raciocínio humano e interpretar o índice de massa corporal de qualquer tipo de espécie bovina e em qualquer região do País.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new multi-model technique of dentification in ANFIS for nonlinear systems. In this technique, the structure used is of the fuzzy Takagi-Sugeno of which the consequences are local linear models that represent the system of different points of operation and the precursors are membership functions whose adjustments are realized by the learning phase of the neuro-fuzzy ANFIS technique. The models that represent the system at different points of the operation can be found with linearization techniques like, for example, the Least Squares method that is robust against sounds and of simple application. The fuzzy system is responsible for informing the proportion of each model that should be utilized, using the membership functions. The membership functions can be adjusted by ANFIS with the use of neural network algorithms, like the back propagation error type, in such a way that the models found for each area are correctly interpolated and define an action of each model for possible entries into the system. In multi-models, the definition of action of models is known as metrics and, since this paper is based on ANFIS, it shall be denominated in ANFIS metrics. This way, ANFIS metrics is utilized to interpolate various models, composing a system to be identified. Differing from the traditional ANFIS, the created technique necessarily represents the system in various well defined regions by unaltered models whose pondered activation as per the membership functions. The selection of regions for the application of the Least Squares method is realized manually from the graphic analysis of the system behavior or from the physical characteristics of the plant. This selection serves as a base to initiate the linear model defining technique and generating the initial configuration of the membership functions. The experiments are conducted in a teaching tank, with multiple sections, designed and created to show the characteristics of the technique. The results from this tank illustrate the performance reached by the technique in task of identifying, utilizing configurations of ANFIS, comparing the developed technique with various models of simple metrics and comparing with the NNARX technique, also adapted to identification

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The area of the hospital automation has been the subject a lot of research, addressing relevant issues which can be automated, such as: management and control (electronic medical records, scheduling appointments, hospitalization, among others); communication (tracking patients, staff and materials), development of medical, hospital and laboratory equipment; monitoring (patients, staff and materials); and aid to medical diagnosis (according to each speciality). This thesis presents an architecture for a patient monitoring and alert systems. This architecture is based on intelligent systems techniques and is applied in hospital automation, specifically in the Intensive Care Unit (ICU) for the patient monitoring in hospital environment. The main goal of this architecture is to transform the multiparameter monitor data into useful information, through the knowledge of specialists and normal parameters of vital signs based on fuzzy logic that allows to extract information about the clinical condition of ICU patients and give a pre-diagnosis. Finally, alerts are dispatched to medical professionals in case any abnormality is found during monitoring. After the validation of the architecture, the fuzzy logic inferences were applied to the trainning and validation of an Artificial Neural Network for classification of the cases that were validated a priori with the fuzzy system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer, despite being one of the leading causes of death among women worldwide is a disease that can be cured if diagnosed early. One of the main techniques used in the detection of breast cancer is the Fine Needle Aspirate FNA (aspiration puncture by thin needle) which, depending on the clinical case, requires the analysis of several medical specialists for the diagnosis development. However, such diagnosis and second opinions have been hampered by geographical dispersion of physicians and/or the difficulty in reconciling time to undertake work together. Within this reality, this PhD thesis uses computational intelligence in medical decision-making support for remote diagnosis. For that purpose, it presents a fuzzy method to assist the diagnosis of breast cancer, able to process and sort data extracted from breast tissue obtained by FNA. This method is integrated into a virtual environment for collaborative remote diagnosis, whose model was developed providing for the incorporation of prerequisite Modules for Pre Diagnosis to support medical decision. On the fuzzy Method Development, the process of knowledge acquisition was carried out by extraction and analysis of numerical data in gold standard data base and by interviews and discussions with medical experts. The method has been tested and validated with real cases and, according to the sensitivity and specificity achieved (correct diagnosis of tumors, malignant and benign respectively), the results obtained were satisfactory, considering the opinions of doctors and the quality standards for diagnosis of breast cancer and comparing them with other studies involving breast cancer diagnosis by FNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On this paper, it is made a comparative analysis among a controller fuzzy coupled to a PID neural adjusted by an AGwith several traditional control techniques, all of them applied in a system of tanks (I model of 2nd order non lineal). With the objective of making possible the techniques involved in the comparative analysis and to validate the control to be compared, simulations were accomplished of some control techniques (conventional PID adjusted by GA, Neural PID (PIDN) adjusted by GA, Fuzzy PI, two Fuzzy attached to a PID Neural adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA) to have some comparative effects with the considered controller. After doing, all the tests, some control structures were elected from all the tested techniques on the simulating stage (conventional PID adjusted by GA, Fuzzy PI, two Fuzzy attached to a PIDN adjusted by GA and Fuzzy MISO (3 inputs) attached to a PIDN adjusted by GA), to be implemented at the real system of tanks. These two kinds of operation, both the simulated and the real, were very important to achieve a solid basement in order to establish the comparisons and the possible validations show by the results