806 resultados para Fuzzy Clustering
Resumo:
RNA polymerase I (Pol I) produces large ribosomal RNAs (rRNAs). In this study, we show that the Rpa49 and Rpa34 Pol I subunits, which do not have counterparts in Pol II and Pol III complexes, are functionally conserved using heterospecific complementation of the human and Schizosaccharomyces pombe orthologues in Saccharomyces cerevisiae. Deletion of RPA49 leads to the disappearance of nucleolar structure, but nucleolar assembly can be restored by decreasing ribosomal gene copy number from 190 to 25. Statistical analysis of Miller spreads in the absence of Rpa49 demonstrates a fourfold decrease in Pol I loading rate per gene and decreased contact between adjacent Pol I complexes. Therefore, the Rpa34 and Rpa49 Pol I–specific subunits are essential for nucleolar assembly and for the high polymerase loading rate associated with frequent contact between adjacent enzymes. Together our data suggest that localized rRNA production results in spatially constrained rRNA production, which is instrumental for nucleolar assembly.
Resumo:
In polymer extrusion, the delivery of a melt which is homogenous in composition and temperature is paramount for achieving high quality extruded products. However, advancements in process control are required to reduce temperature variations across the melt flow which can result in poor product quality. The majority of thermal monitoring methods provide only low accuracy point/bulk melt temperature measurements and cause poor controller performance. Furthermore, the most common conventional proportional-integral-derivative controllers seem to be incapable of performing well over the nonlinear operating region. This paper presents a model-based fuzzy control approach to reduce the die melt temperature variations across the melt flow while achieving desired average die melt temperature. Simulation results confirm the efficacy of the proposed controller.
Resumo:
Laying hens generally choose to aggregate, but the extent to which the environments in which we house them impact on social group dynamics is not known. In this paper the effect of pen environment on spatial clustering is considered. Twelve groups of four laying hens were studied under three environmental conditions: wire floor (W), shavings (Sh) and perches, peat, nestbox and shavings (PPN). Groups experienced each environment twice, for five weeks each time, in a systematic order that varied from group to group. Video recordings were made one day per week for 30 weeks. To determine level of clustering, we recorded positional data from a randomly selected 20-min excerpt per video (a total of 20 min x 360 videos analysed). On screen, pens were divided into six equal areas. In addition, PPN pens were divided into an additional four (sub) areas, to account for the use of perches (one area per half perch). Every 5 s, we recorded the location of each bird and calculated location use over time, feeding synchrony and cluster scores for each environment. Feeding synchrony and cluster scores were compared against unweighted and weighted (according to observed proportional location use) Poisson distributions to distinguish between resource and social attraction.
Resumo:
A technique for automatic exploration of the genetic search region through fuzzy coding (Sharma and Irwin, 2003) has been proposed. Fuzzy coding (FC) provides the value of a variable on the basis of the optimum number of selected fuzzy sets and their effectiveness in terms of degree-of-membership. It is an indirect encoding method and has been shown to perform better than other conventional binary, Gray and floating-point encoding methods. However, the static range of the membership functions is a major problem in fuzzy coding, resulting in longer times to arrive at an optimum solution in large or complicated search spaces. This paper proposes a new algorithm, called fuzzy coding with a dynamic range (FCDR), which dynamically allocates the range of the variables to evolve an effective search region, thereby achieving faster convergence. Results are presented for two benchmark optimisation problems, and also for a case study involving neural identification of a highly non-linear pH neutralisation process from experimental data. It is shown that dynamic exploration of the genetic search region is effective for parameter optimisation in problems where the search space is complicated.