982 resultados para Functional equations.
Resumo:
Using density functional theory, we investigated the position preference and diffusion mechanisms of interstitial oxygen ions in lanthanum silicate La9.33Si6O26, which is an apatite-structured oxide and a promising candidate electrolyte material for solid oxide fuel cells. The reported lanthanum vacancies were explicitly taken into account by theoretically determining their arrangement with a supercell model. The most stable structures and the formation energies of oxygen interstitials were determined for each charged state. It was found that the double-negatively charged state is stable over a wide range of the Fermi level, and that the excess oxygen ions form split interstitials with the original oxygen ions, while the neutral and the single-negatively charged states preferably form molecular oxygen. These species were found near the lanthanum vacancy site. The theoretically determined migration pathway along the c-axis essentially follows an interstitialcy mechanism. The obtained migration barrier is sensitive to the charge state, and is also affected by the lanthanum vacancy. The barrier height of the double-negatively charged state was calculated to be 0.58 eV for the model structure, which is consistent with the measured activation energy.
Resumo:
A new framework is proposed in this work to solve multidimensional population balance equations (PBEs) using the method of discretization. A continuous PBE is considered as a statement of evolution of one evolving property of particles and conservation of their n internal attributes. Discretization must therefore preserve n + I properties of particles. Continuously distributed population is represented on discrete fixed pivots as in the fixed pivot technique of Kumar and Ramkrishna [1996a. On the solution of population balance equation by discretization-I A fixed pivot technique. Chemical Engineering Science 51(8), 1311-1332] for 1-d PBEs, but instead of the earlier extensions of this technique proposed in the literature which preserve 2(n) properties of non-pivot particles, the new framework requires n + I properties to be preserved. This opens up the use of triangular and tetrahedral elements to solve 2-d and 3-d PBEs, instead of the rectangles and cuboids that are suggested in the literature. Capabilities of computational fluid dynamics and other packages available for generating complex meshes can also be harnessed. The numerical results obtained indeed show the effectiveness of the new framework. It also brings out the hitherto unknown role of directionality of the grid in controlling the accuracy of the numerical solution of multidimensional PBEs. The numerical results obtained show that the quality of the numerical solution can be improved significantly just by altering the directionality of the grid, which does not require any increase in the number of points, or any refinement of the grid, or even redistribution of pivots in space. Directionality of a grid can be altered simply by regrouping of pivots.
Resumo:
Mycobacterial genomes are endowed with many eukaryote-like nucleotide cyclase genes encoding proteins that can synthesize 3',5'-cyclic AMP (cAMP). However, the roles of cAMP and the need for such redundancy in terms of adenylyl cyclase genes remain unknown. We measured cAMP levels in Mycobacterium smegmatis during growth and under various stress conditions and report the first biochemical and functional characterization of the MSMEG_3780 adenylyl cyclase, whose orthologs in Mycobacterium tuberculosis (Rv1647) and Mycobacterium leprae (ML1399) have been recently characterized in vitro. MSMEG_3780 was important for producing cAMP levels in the logarithmic phase of growth, since the {Delta}MSMEG_3780 strain showed lower intracellular cAMP levels at this stage of growth. cAMP levels decreased in wild-type M. smegmatis under conditions of acid stress but not in the {Delta}MSMEG_3780 strain. This was correlated with a reduction in MSMEG_3780 promoter activity, indicating that the effect of the reduction in cAMP levels on acid stress was caused by a decrease in the transcription of MSMEG_3780. Complementation of the {Delta}MSMEG_3780 strain with the genomic integration of MSMEG_3780 or the Rv1647 gene could restore cAMP levels during logarithmic growth. The Rv1647 promoter was also acid sensitive, emphasizing the biochemical and functional similarities in these two adenylyl cyclases. This study therefore represents the first detailed biochemical and functional analysis of an adenylyl cyclase that is important for maintaining cAMP levels in mycobacteria and underscores the subtle roles that these genes may play in the physiology of the organism.
Resumo:
The brain's functional network exhibits many features facilitating functional specialization, integration, and robustness to attack. Using graph theory to characterize brain networks, studies demonstrate their small-world, modular, and "rich-club" properties, with deviations reported in many common neuropathological conditions. Here we estimate the heritability of five widely used graph theoretical metrics (mean clustering coefficient (γ), modularity (Q), rich-club coefficient (ϕnorm), global efficiency (λ), small-worldness (σ)) over a range of connection densities (k=5-25%) in a large cohort of twins (N=592, 84 MZ and 89 DZ twin pairs, 246 single twins, age 23±2.5). We also considered the effects of global signal regression (GSR). We found that the graph metrics were moderately influenced by genetic factors h2 (γ=47-59%, Q=38-59%, ϕnorm=0-29%, λ=52-64%, σ=51-59%) at lower connection densities (≤15%), and when global signal regression was implemented, heritability estimates decreased substantially h2 (γ=0-26%, Q=0-28%, ϕnorm=0%, λ=23-30%, σ=0-27%). Distinct network features were phenotypically correlated (|r|=0.15-0.81), and γ, Q, and λ were found to be influenced by overlapping genetic factors. Our findings suggest that these metrics may be potential endophenotypes for psychiatric disease and suitable for genetic association studies, but that genetic effects must be interpreted with respect to methodological choices.
Resumo:
Speech has both auditory and visual components (heard speech sounds and seen articulatory gestures). During all perception, selective attention facilitates efficient information processing and enables concentration on high-priority stimuli. Auditory and visual sensory systems interact at multiple processing levels during speech perception and, further, the classical motor speech regions seem also to participate in speech perception. Auditory, visual, and motor-articulatory processes may thus work in parallel during speech perception, their use possibly depending on the information available and the individual characteristics of the observer. Because of their subtle speech perception difficulties possibly stemming from disturbances at elemental levels of sensory processing, dyslexic readers may rely more on motor-articulatory speech perception strategies than do fluent readers. This thesis aimed to investigate the neural mechanisms of speech perception and selective attention in fluent and dyslexic readers. We conducted four functional magnetic resonance imaging experiments, during which subjects perceived articulatory gestures, speech sounds, and other auditory and visual stimuli. Gradient echo-planar images depicting blood oxygenation level-dependent contrast were acquired during stimulus presentation to indirectly measure brain hemodynamic activation. Lip-reading activated the primary auditory cortex, and selective attention to visual speech gestures enhanced activity within the left secondary auditory cortex. Attention to non-speech sounds enhanced auditory cortex activity bilaterally; this effect showed modulation by sound presentation rate. A comparison between fluent and dyslexic readers' brain hemodynamic activity during audiovisual speech perception revealed stronger activation of predominantly motor speech areas in dyslexic readers during a contrast test that allowed exploration of the processing of phonetic features extracted from auditory and visual speech. The results show that visual speech perception modulates hemodynamic activity within auditory cortex areas once considered unimodal, and suggest that the left secondary auditory cortex specifically participates in extracting the linguistic content of seen articulatory gestures. They are strong evidence for the importance of attention as a modulator of auditory cortex function during both sound processing and visual speech perception, and point out the nature of attention as an interactive process (influenced by stimulus-driven effects). Further, they suggest heightened reliance on motor-articulatory and visual speech perception strategies among dyslexic readers, possibly compensating for their auditory speech perception difficulties.
Resumo:
The photocatalytic degradation of five anionic, eight cationic and three solvent dyes using combustion-synthesized nano-TiO2 (CSTiO2) and commercial Degussa P-25 TiO2 (DP-25) were evaluated to determine the effect of the functional group in the dye. The degradation of the dyes was quantified using the initial rate of decolorization and mineralization. The decolorization of the anionic dyes with CSTiO2 followed the order: indigo carmine > eosin Y > amido black 10B > alizarin cyanine green > orange G. The decolorization of the cationic dyes with DP-25 followed the order: malachite green > pyronin Y > rhodamine 6G > azure B > nile blue sulfate > auramine O approximate to acriflavine P approximate to safranin O. CSTiO2 showed higher rates of decolorization and mineralization for all the anionic dyes compared to DP-25, while DP-25 was better in terms of decolorization for most of the cationic dyes. The solvent dyes exhibited adsorption dependent decolorization. The order of decolorization and mineralization of the anionic and cationic dyes (a) with CS TiO2 and DP-25 was different and correlated with the surface properties of these catalysts (b) were rationalized with the molecular structure of the dye and the degradation pathway of the dye. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Polyphenol oxidase (PPO) catalyzes the oxidation of o-diphenols to their respective quinones. The quinones autopolymerize to form dark pigments, an undesired effect. PPO is therefore the target for the development of antibrowning and antimelanization agents. A series of phenolic compounds experimentally evaluated for their binding affinity and inhibition constants were computationally docked to the active site of catechol oxidase. Docking studies suggested two distinct modes of binding, dividing the docked ligands into two groups. Remarkably, the first group corresponds to ligands determined to be substrates and the second group corresponds to reversible inhibitors. Analyses of the complexes provide structural explanations for correlating subtle changes in the position and nature of the substitutions on o-diphenols to their functional properties as substrates and inhibitors. Higher reaction rates and binding are reckoned by additional interactions of the substrates with key residues that line the hydrophobic cavity. The docking results suggest that inhibition of oxidation stems from an interaction between the aromatic carboxylic acid group and the apical His 109 of the four coordinates of the trigonal pyramidal coordination polyhedron of CuA. The spatial orientation of the hydroxyl in relation to the carboxylic group either allows a perfect fit in the substrate cavity, leading to inhibition, or because of a steric clash flips the molecule vertically, facilitating oxidation. This is the first study to explain, at the molecular level, the determinants Of substrate and inhibitor specificity of a catechol oxidase, thereby providing a platform for the design of selective inhibitors useful to both the food and pharmaceutical industries.
Resumo:
In the current era of high-throughput sequencing and structure determination, functional annotation has become a bottleneck in biomedical science. Here, we show that automated inference of molecular function using functional linkages among genes increases the accuracy of functional assignments by >= 8% and enriches functional descriptions in >= 34% of top assignments. Furthermore, biochemical literature supports >80% of automated inferences for previously unannotated proteins. These results emphasize the benefit of incorporating functional linkages in protein annotation.
Resumo:
Exercise that targets ankle joint mobility may lead to improvement in calf muscle pump function and subsequent healing. The objectives of this research were to assess the impact of an exercise intervention in addition to routine evidence-based care on the healing rates, functional ability and health-related quality of life for adults with venous leg ulcers (VLUs). This study included 63 patients with VLUs. Patients were randomised to receive either a 12-week exercise intervention with a telephone coaching component or usual care plus telephone calls at the same timepoints. The primary outcome evaluated the effectiveness of the intervention in relation to wound healing. The secondary outcomes evaluated physical activity, functional ability and health-related quality of life measures between groups at the end of the 12 weeks. A per protocol analysis complemented the effectiveness (intention-to-treat) analysis to highlight the importance of adherence to an exercise intervention. Intention-to-treat analyses for the primary outcome showed 77% of those in the intervention group healed by 12 weeks compared to 53% of those in the usual care group. Although this difference was not statistically significant due to a smaller than expected sample size, a 24% difference in healing rates could be considered clinically significant. The per protocol analysis for wound healing, however, showed that those in the intervention group who adhered to the exercise protocol 75% or more of the time were significantly more likely to heal and showed higher rates for wound healing than the control group (P = 0·01), that is, 95% of those who adhered in the intervention group healed in 12 weeks. The secondary outcomes of physical activity, functional ability and health-related quality of life were not significantly altered by the intervention. Among the secondary outcomes (physical activity, functional ability and health-related quality of life), intention-to-treat analyses did not support the effectiveness of the intervention. However, per protocol analyses revealed encouraging results with those participants who adhered more than 75% of the time (n = 19) showing significantly improved Range of Ankle Motion from the self-management exercise programme (P = 0·045). This study has shown that those participants who adhere to the exercise programme as an adjunctive treatment to standard care are more likely to heal and have better functional outcomes than those who do not adhere to the exercises in conjunction with usual care.
Resumo:
Lysophosphatidic acid (LPA) acts as a signaling molecule that regulates diverse cellular processes and it can rapidly be metabolized by phosphatase and acyltransferase LPA phosphatase gene has not been identified and characterized in plants so far The BLAST search revealed that the At3g03520 is similar to phospholipase family. and distantly related to bacterial phosphatases The conserved motif. (J)4XXXNXSFD, was identified in both At3g03520 like phospholipases and acid phosphatases In silico expression analysis of At3g03520 revealed a high expression during phosphate starvation and abiotic stresses. This gene was overexpressed in Escherichia coli and shown to posses LPA specific phosphatase activity These results Suggest that this gene possibly plays a role in signal transduction and storage lipid synthesis.
Resumo:
Protein kinases phosphorylating Ser/Thr/Tyr residues in several cellular proteins exert tight control over their biological functions. They constitute the largest protein family in most eukaryotic species. Protein kinases classified based on sequence similarity in their catalytic domains, cluster into subfamilies, which share gross functional properties. Many protein kinases are associated or tethered covalently to domains that serve as adapter or regulatory modules,naiding substrate recruitment, specificity, and also serve as scaffolds. Hence the modular organisation of the protein kinases serves as guidelines to their functional and molecular properties. Analysis of genomic repertoires of protein kinases in eukaryotes have revealed wide spectrum of domain organisation across various subfamilies of kinases. Occurrence of organism-specific novel domain combinations suggests functional diversity achieved by protein kinases in order to regulate variety of biological processes. In addition, domain architecture of protein kinases revealed existence of hybrid protein kinase subfamilies and their emerging roles in the signaling of eukaryotic organisms. In this review we discuss the repertoire of non-kinase domains tethered to multi-domain kinases in the metazoans. Similarities and differences in the domain architectures of protein kinases in these organisms indicate conserved and unique features that are critical to functional specialization. (C) 2009 Elsevier Ltd. All rights reserved.