937 resultados para Functional Capacity Index
Resumo:
Multiple sclerosis (MS), a variable and diffuse disease affecting white and gray matter, is known to cause functional connectivity anomalies in patients. However, related studies published to-date are post hoc; our hypothesis was that such alterations could discriminate between patients and healthy controls in a predictive setting, laying the groundwork for imaging-based prognosis. Using functional magnetic resonance imaging resting state data of 22 minimally disabled MS patients and 14 controls, we developed a predictive model of connectivity alterations in MS: a whole-brain connectivity matrix was built for each subject from the slow oscillations (<0.11Hz) of region-averaged time series, and a pattern recognition technique was used to learn a discriminant function indicating which particular functional connections are most affected by disease. Classification performance using strict cross-validation yielded a sensitivity of 82% (above chance at p<0.005) and specificity of 86% (p<0.01) to distinguish between MS patients and controls. The most discriminative connectivity changes were found in subcortical and temporal regions, and contralateral connections were more discriminative than ipsilateral connections. The pattern of decreased discriminative connections can be summarized post hoc in an index that correlates positively (ρ=0.61) with white matter lesion load, possibly indicating functional reorganisation to cope with increasing lesion load. These results are consistent with a subtle but widespread impact of lesions in white matter and in gray matter structures serving as high-level integrative hubs. These findings suggest that predictive models of resting state fMRI can reveal specific anomalies due to MS with high sensitivity and specificity, potentially leading to new non-invasive markers.
Resumo:
BACKGROUND AND PURPOSE: The ASTRAL score was recently introduced as a prognostic tool for acute ischemic stroke. It predicts 3-month outcome reliably in both the derivation and the validation European cohorts. We aimed to validate the ASTRAL score in a Chinese stroke population and moreover to explore its prognostic value to predict 12-month outcome. METHODS: We applied the ASTRAL score to acute ischemic stroke patients admitted to 132 study sites of the China National Stroke Registry. Unfavorable outcome was assessed as a modified Rankin Scale score >2 at 3 and 12 months. Areas under the curve were calculated to quantify the prognostic value. Calibration was assessed by comparing predicted and observed probability of unfavorable outcome using Pearson correlation coefficient. RESULTS: Among 3755 patients, 1473 (39.7%) had 3-month unfavorable outcome. Areas under the curve for 3 and 12 months were 0.82 and 0.81, respectively. There was high correlation between observed and expected probability of unfavorable 3- and 12-month outcome (Pearson correlation coefficient: 0.964 and 0.963, respectively). CONCLUSIONS: ASTRAL score is a reliable tool to predict unfavorable outcome at 3 and 12 months after acute ischemic stroke in the Chinese population. It is a useful tool that can be readily applied in clinical practice to risk-stratify acute stroke patients.
Resumo:
Objective: to assess the diagnostic accuracy of different anthropometric markers in defining low aerobic fitness among adolescents. Methods: cross-sectional study on 2,331 boys and 2,366 girls aged 10 - 18 years. Body mass index (BMI) was measured using standardized methods; body fat (BF) was assessed by bioelectrical impedance. Low aerobic fitness was assessed by the 20-meter shuttle run using the FITNESSGRAMR criteria. Waist was measured in a subsample of 1,933 boys and 1,897 girls. Overweight, obesity and excess fat were defined according to the International Obesity Task Force (IOTF) or FITNESSGRAMR criteria. Results: 38.5% of boys and 46.5% of girls were considered as unfit according to the FITNESSGRAMR criteria. In boys, the area under the ROC curve (AUC) and 95% confidence interval were 66.7 (64.1 - 69.3), 67.1 (64.5 - 69.6) and 64.6 (61.9 - 67.2) for BMI, BF and waist, respectively (P<0.02). In girls, the values were 68.3 (65.9 - 70.8), 63.8 (61.3 - 66.3) and 65.9 (63.4 - 68.4), respectively (P<0.001). In boys, the sensitivity and specificity to diagnose low fitness were 13% and 99% for obesity (IOTF); 38% and 86% for overweight + obesity (IOTF); 28% and 94% for obesity (FITNESSGRAMR) and 42% and 81% for excess fat (FITNESSGRAMR). For girls, the values were 9% and 99% for obesity (IOTF); 33% and 82% for overweight + obesity (IOTF); 22% and 94% for obesity (FITNESSGRAMR) and 26% and 90% for excess fat (FITNESSGRAMR). Conclusions: BMI, not body fat or waist, should be used to define low aerobic fitness. The IOTF BMI cut-points to define obesity have a very low screening capacity and should not be used.
A priori parameterisation of the CERES soil-crop models and tests against several European data sets
Resumo:
Mechanistic soil-crop models have become indispensable tools to investigate the effect of management practices on the productivity or environmental impacts of arable crops. Ideally these models may claim to be universally applicable because they simulate the major processes governing the fate of inputs such as fertiliser nitrogen or pesticides. However, because they deal with complex systems and uncertain phenomena, site-specific calibration is usually a prerequisite to ensure their predictions are realistic. This statement implies that some experimental knowledge on the system to be simulated should be available prior to any modelling attempt, and raises a tremendous limitation to practical applications of models. Because the demand for more general simulation results is high, modellers have nevertheless taken the bold step of extrapolating a model tested within a limited sample of real conditions to a much larger domain. While methodological questions are often disregarded in this extrapolation process, they are specifically addressed in this paper, and in particular the issue of models a priori parameterisation. We thus implemented and tested a standard procedure to parameterize the soil components of a modified version of the CERES models. The procedure converts routinely-available soil properties into functional characteristics by means of pedo-transfer functions. The resulting predictions of soil water and nitrogen dynamics, as well as crop biomass, nitrogen content and leaf area index were compared to observations from trials conducted in five locations across Europe (southern Italy, northern Spain, northern France and northern Germany). In three cases, the model’s performance was judged acceptable when compared to experimental errors on the measurements, based on a test of the model’s root mean squared error (RMSE). Significant deviations between observations and model outputs were however noted in all sites, and could be ascribed to various model routines. In decreasing importance, these were: water balance, the turnover of soil organic matter, and crop N uptake. A better match to field observations could therefore be achieved by visually adjusting related parameters, such as field-capacity water content or the size of soil microbial biomass. As a result, model predictions fell within the measurement errors in all sites for most variables, and the model’s RMSE was within the range of published values for similar tests. We conclude that the proposed a priori method yields acceptable simulations with only a 50% probability, a figure which may be greatly increased through a posteriori calibration. Modellers should thus exercise caution when extrapolating their models to a large sample of pedo-climatic conditions for which they have only limited information.
Resumo:
The phototropin 1 (phot1) blue light receptor mediates a number of adaptive responses, including phototropism, that generally serve to optimize photosynthetic capacity. Phot1 is a plasma membrane-associated protein, but upon irradiation, a fraction is internalized into the cytoplasm. Although this phenomenon has been reported for more than a decade, its biological significance remains elusive. Here, we use a genetic approach to revisit the prevalent hypotheses regarding the functional importance of receptor internalization. Transgenic plants expressing lipidated versions of phot1 that are permanently anchored to the plasma membrane were used to analyse the effect of internalization on receptor turnover, phototropism and other phot1-mediated responses. Myristoylation and farnesylation effectively prevented phot1 internalization. Both modified photoreceptors were found to be fully functional in Arabidopsis, rescuing phototropism and all other phot1-mediated responses tested. Light-mediated phot1 turnover occurred as in the native receptor. Furthermore, our work does not provide any evidence of a role of phot1 internalization in the attenuation of receptor signalling during phototropism. Our results demonstrate that phot1 signalling is initiated at the plasma membrane. They furthermore indicate that release of phot1 into the cytosol is not linked to receptor turnover or desensitization.
Resumo:
Background: Bacterial populations are highly successful at colonizing new habitats and adapting to changing environmental conditions, partly due to their capacity to evolve novel virulence and metabolic pathways in response to stress conditions and to shuffle them by horizontal gene transfer (HGT). A common theme in the evolution of new functions consists of gene duplication followed by functional divergence. UlaG, a unique manganese-dependent metallo-b-lactamase (MBL) enzyme involved in L-ascorbate metabolism by commensal and symbiotic enterobacteria, provides a model for the study of the emergence of new catalytic activities from the modification of an ancient fold. Furthermore, UlaG is the founding member of the so-called UlaG-like (UlaGL) protein family, a recently established and poorly characterized family comprising divalent (and perhaps trivalent)metal-binding MBLs that catalyze transformations on phosphorylated sugars and nucleotides. Results: Here we combined protein structure-guided and sequence-only molecular phylogenetic analyses to dissect the molecular evolution of UlaG and to study its phylogenomic distribution, its relatedness with present-day UlaGL protein sequences and functional conservation. Phylogenetic analyses indicate that UlaGL sequences are present in Bacteria and Archaea, with bona fide orthologs found mainly in mammalian and plant-associated Gramnegative and Gram-positive bacteria. The incongruence between the UlaGL tree and known species trees indicates exchange by HGT and suggests that the UlaGL-encoding genes provided a growth advantage under changing conditions. Our search for more distantly related protein sequences aided by structural homology has uncovered that UlaGL sequences have a common evolutionary origin with present-day RNA processing and metabolizing MBL enzymes widespread in Bacteria, Archaea, and Eukarya. This observation suggests an ancient origin for the UlaGL family within the broader trunk of the MBL superfamily by duplication, neofunctionalization and fixation. Conclusions: Our results suggest that the forerunner of UlaG was present as an RNA metabolizing enzyme in the last common ancestor, and that the modern descendants of that ancestral gene have a wide phylogenetic distribution and functional roles. We propose that the UlaGL family evolved new metabolic roles among bacterial and possibly archeal phyla in the setting of a close association with metazoans, such as in the mammalian gastrointestinal tract or in animal and plant pathogens, as well as in environmental settings. Accordingly, the major evolutionary forces shaping the UlaGL family include vertical inheritance and lineage-specific duplication and acquisition of novel metabolic functions, followed by HGT and numerous lineage-specific gene loss events.
Resumo:
The objective of the present study was to characterize the chemistry and the antioxidant capacity in 8 species of native fruits from Amazonia. All the fruits were collected at full physiological and commercial maturity from properties located at: Boa Vista / RR, São Luiz do Anauá / RR, Manaus / AM, and Belém / PA. At the end of the experiment, the functional pattern for the camu-camu fruits showed that the total phenolic and ascorbic acid content and antioxidant assays were superior compared to the other samples. Despite the functional losses detected for the freeze-dried samples of the camu-camu fruit, all the other freeze-dried samples kept under -20ºC showed appropriate stability for long-term storage. In addition, it was also observed that fruit peel showed higher antioxidant activity than pulp or samples containing peel and pulp tissues in the same extract. When the ratio between the ORAC and total phenolic assays were observed, the uxi fruit demonstrated the highest antioxidant power compared to the other fruits studied, despite its relatively low levels of phenolic compound content and ORAC values. This means that there is a relevant contribution of these phenolic compounds to the antioxidant activity of uxi fruit.
Resumo:
Neuroinflammation is the local reaction of the brain to infection, trauma, toxic molecules or protein aggregates. The brain resident macrophages, microglia, are able to trigger an appropriate response involving secretion of cytokines and chemokines, resulting in the activation of astrocytes and recruitment of peripheral immune cells. IL-1β plays an important role in this response; yet its production and mode of action in the brain are not fully understood and its precise implication in neurodegenerative diseases needs further characterization. Our results indicate that the capacity to form a functional NLRP3 inflammasome and secretion of IL-1β is limited to the microglial compartment in the mouse brain. We were not able to observe IL-1β secretion from astrocytes, nor do they express all NLRP3 inflammasome components. Microglia were able to produce IL-1β in response to different classical inflammasome activators, such as ATP, Nigericin or Alum. Similarly, microglia secreted IL-18 and IL-1α, two other inflammasome-linked pro-inflammatory factors. Cell stimulation with α-synuclein, a neurodegenerative disease-related peptide, did not result in the release of active IL-1β by microglia, despite a weak pro-inflammatory effect. Amyloid-β peptides were able to activate the NLRP3 inflammasome in microglia and IL-1β secretion occurred in a P2X7 receptor-independent manner. Thus microglia-dependent inflammasome activation can play an important role in the brain and especially in neuroinflammatory conditions.
Resumo:
Background The MPER region of the HIV-1 envelope glycoprotein gp41 is targeted by broadly neutralizing antibodies. However, the localization of this epitope in a hydrophobic environment seems to hamper the elicitation of these antibodies in HIV infected individuals. We have quantified and characterized anti-MPER antibodies by ELISA and by flow cytometry using a collection of mini gp41-derived proteins expressed on the surface of 293T cells. Longitudinal plasma samples from 35 HIV-1 infected individuals were assayed for MPER recognition and MPER-dependent neutralizing capacity using HIV-2 viruses engrafted with HIV-1 MPER sequences. Results Miniproteins devoid of the cysteine loop of gp41 exposed the MPER on 293T cell membrane. Anti-MPER antibodies were identified in most individuals and were stable when analyzed in longitudinal samples. The magnitude of the responses was strongly correlated with the global response to the HIV-1 envelope glycoprotein, suggesting no specific limitation for anti-MPER antibodies. Peptide mapping showed poor recognition of the C-terminal MPER moiety and a wide presence of antibodies against the 2F5 epitope. However, antibody titers failed to correlate with 2F5-blocking activity and, more importantly, with the specific neutralization of HIV-2 chimeric viruses bearing the HIV-1 MPER sequence; suggesting a strong functional heterogeneity in anti-MPER humoral responses. Conclusions Anti-MPER antibodies can be detected in the vast majority of HIV-1 infected individuals and are generated in the context of the global anti-Env response. However, the neutralizing capacity is heterogeneous suggesting that eliciting neutralizing anti-MPER antibodies by immunization might require refinement of immunogens to skip nonneutralizing responses.
Resumo:
Several bioaffinity assays are based on the detection of an analyte which is bound on a solid substrate via biochemical interaction. These so called solid phase assays are based on the adhesion of the primary binding partner on a solid surface, which then binds the analyte to be detected. In this thesis work a novel solid phase based assay technology, known as spot technology, was developed. The spot technology is based on combination of high-capacity solid phases, concentrated in a spot format, utilising modified streptavidin molecules and recombinant antibody fragments. The reduction of the solid phase binding surface to a size of a spot enabled denser binding of the target molecules, providing improved signal intensities and signal-to-background ratio when applied in different solid phase immunoassays. Streptavidin-biotin interactions are commonly utilised in numerous different bioaffinity assays and the ultimate nature of streptavidin to bind biotin is among the strongest non-covalent interaction reported between two biomolecules. In this study native core streptavidin was chemically modified to provide polymerised streptavidin molecules with altered adsorption properties. These streptavidin conjugates, when coated onto polystyrene surface, provided enhanced biotin binding capacity and surface stability when compared to a reference coating constructed with native streptavidin. Furthermore, the combination of chemically modified streptavidin, sitespecifically biotinylated antibody fragments and the spot coating technology provided highly dense solid phase coating with improved binding properties. The performance of the spot assay technology was further demonstrated in different immunoassay configurations. Human thyroid stimulating hormone (TSH) and human cardiac troponin I (cTnI) were used as model analytes to show the applicability of the highly sensitive spot-based solid-phase immunoassay for detection of very low levels of analytes. It was demonstrated that the spot technology provided an assay concept with enhanced sensitivity and short turn-around times, characteristics that are highly suitable for point-of-care applications.
Resumo:
The polyphenol contents and antioxidant capacity of Brazilian red grape juices and wine vinegars were analyzed. Additionally, it was analyzed the human polyphenol absorption and acute effect in plasmatic oxidative metabolism biomarkers after juice ingestion. The organic Bordo grape juice (GBO) presented a higher level of trans-resveratrol, quercitin, rutin, gallic acid, caffeic acid and total flavonoids then other juices and vinegars as well as antioxidant capacity. The plasmatic polyphenol increased 27.2% after GBO juice ingestion. The results showed that juices and vinegars from Brazilian crops present similar chemical and functional properties described in studies performed in other countries.
Resumo:
The content of isoorientin in passion fruit rinds (Passiflora edulis fo. flavicarpa O. Degener) was determined by HPTLC (high performance thin layer chromatography) with densitometric analysis. The results revealed a higher amount of isoorientin in healthy rinds of P. edulis (92.275 ± 0.610 mg L-1) than in rinds with typical symptoms of PWV (Passion fruit Woodiness Virus) infection (28.931 ± 0.346 mg L-1). The HPTLC data, allied to assays of radical scavenging activity, suggest the potential of P. edulis rinds as a natural source of flavonoids or as a possible functional food.
Resumo:
Pathogens in maize (Zea mays) seeds cause serious problems, such as the loss of their capacity to germinative. The objectives of this study were to identify the optimal period for infection of maize seeds on agar colonized by Fusarium graminearum, when incubated for 4, 8, 16 and 32 h, and to evaluate the effect of the fungus on the germination and vigor of seeds with different infection levels. After the respective incubation periods, the seeds were removed from the culture medium and submitted to the blotter test for 3 min with and without superficial disinfection with 1% solution of sodium hypochlorite. Once the optimal period for seed incubation was identified, seeds from the same sample were again placed on the colonized agar for infection. Germination and vigor tests (accelerated aging and cold test) were performed with a mixture of healthy seeds (placed on PDA medium) and inoculated seeds, resulting in seeds with 0, 20, 40, 60, 80 and 100% rates of infection. The results showed that a period of 32 h was long enough to obtain seeds infected by the pathogen. There were no significant effects of fungal infection on seed germination at any of the infection levels, probably due to the high vigor of the maize seed lot tested. Regarding vigor tests, infection levels differed significantly from the control (0% infection), but there were no significant differences among the infection levels.
Resumo:
ABSTRACT The objective of this study was to evaluate the thermoregulatory response of dairy buffaloes in pre-milking and post-milking. To identify animal thermoregulatory capacity, skin surface temperatures were taken by an infrared thermometer (SST), a thermographic camera (MTBP) as well as respiratory rate records (RR). Black Globe and Humidity Index (BGHI), radiating thermal load (RTL) and enthalpy (H) were used to characterize the thermal environment. Artificial Neural Networks analyzed those indices as well as animal physiological data, using a single layer trained with the least mean square (LMS) algorithm. The results indicated that pre-milking and post-milking environments reached BGHI, RR, SST and MTBP values above thermal neutrality zone for buffaloes. In addition, limits of surface skin temperatures were mostly influenced by changing ambient conditions to the detriment of respiratory rates. It follows that buffaloes are sensitive to environmental changes and their skin temperatures are the best indicators of thermal comfort in relation to respiratory rate.
Resumo:
PURPOSE: To determine anatomical and functional pelvic floor measurements performed with three-dimensional (3-D) endovaginal ultrasonography in asymptomatic nulliparous women without dysfunctions detected in previous dynamic 3-D anorectal ultrasonography (echo defecography) and to demonstrate the interobserver reliability of these measurements. METHODS: Asymptomatic nulliparous volunteers were submitted to echo defecography to identify dynamic dysfunctions, including anatomical (rectocele, intussusceptions, entero/sigmoidocele and perineal descent) and functional changes (non-relaxation or paradoxical contraction of the puborectalis muscle) in the posterior compartment and assessed with regard to the biometric index of levator hiatus, pubovisceral muscle thickness, urethral length, anorectal angle, anorectal junction position and bladder neck position with the 3-D endovaginal ultrasonography. All measurements were compared at rest and during the Valsalva maneuver, and perineal and bladder neck descent was determined. The level of interobserver agreement was evaluated for all measurements. RESULTS: A total of 34 volunteers were assessed by echo defecography and by 3-D endovaginal ultrasonography. Out of these, 20 subjects met the inclusion criteria. The 14 excluded subjects were found to have posterior dynamic dysfunctions. During the Valsalva maneuver, the hiatal area was significantly larger, the urethra was significantly shorter and the anorectal angle was greater. Measurements at rest and during the Valsalva maneuver differed significantly with regard to anorectal junction and bladder neck position. The mean values for normal perineal descent and bladder neck descent were 0.6 cm and 0.5 cm above the symphysis pubis, respectively. The intraclass correlation coefficient ranged from 0.62-0.93. CONCLUSIONS: Functional biometric indexes, normal perineal descent and bladder neck descent values were determined for young asymptomatic nulliparous women with the 3-D endovaginal ultrasonography. The method was found to be reliable to measure pelvic floor structures at rest and during Valsalva, and might therefore be suitable for identifying dysfunctions in symptomatic patients.