891 resultados para Fourier transform spectra
Resumo:
Direct infusion electrospray ionization mass spectrometry in the negative ion mode, ESI(-)-MS and Fourier transform infrared spectroscopy (FTIR) were used together with partial least squares (PLS) as a tool to determine B3 adulteration (B3 - mixture of 3% v/v of biodiesel in diesel) with kerosene and residual oil.
Resumo:
In this study, bioactive hydroxyapatite nanoparticles were prepared by two different methods: wet chemical precipitation and biomimetic precipitation. The aim was to evaluate the morphology, particle-size, crystallinity and phases of the powders obtained by traditional wet chemical precipitation and the novel biomimetic precipitation using a supersaturated calcium solution. The nanoparticles were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The results revealed that the nanoparticles were formed by hydroxyapatite with a high crystallinity and controlled morphology. Additionally, it was found that the shape and size of the nanoparticles can be modified with each preparation method.
Resumo:
The excitation energy transfer between chlorophylls in major and minor antenna complexes of photosystem II (PSII) was investigated using quantum Fourier transforms. These transforms have an important role in the efficiency of quantum algorithms of quantum computers. The equation 2n=N was used to make the connection between excitation energy transfers using quantum Fourier transform, where n is the number of qubits required for simulation of transfers and N is the number of chlorophylls in the antenna complexes.
Resumo:
The partial oxidation of ethanol on γ-Al2O3, CeO2, ZrO2 and Ce xZr1-xO2 supported rhodium catalysts was investigated by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The catalysts were characterized by temperature-programmed reduction (TPR) and cyclohexane dehydrogenation. DRIFTS studies on the partial oxidation of ethanol showed that ethanol is adsorbed dissociatively, through O-H bond breaking, with the formation of ethoxy species, followed by successive dehydrogenation to acetaldehyde and acetyl species. Further oxidation to acetate and carbonate species lead to the formation of CO, CH4 and H2 by decomposition. The presence of CeO2 in the catalysts favored the oxidation steps due to its oxygen storage capacity.
Resumo:
Fourier transform infrared attenuated total reflectance (FT-IR ATR) spectroscopy was used to determine 14 different measurands in northeast Brazilian honey samples. Nine different honey samples (six monofloral and three polyfloral) from 2009 obtained from the company CEARAPI underwent FT-IR ATR, palynological, color, and sensorial analysis to obtain preliminary results for these types of honey. The results showed that there are five monofloral, three bifloral, and one extrafloral honey, and also that mid-infrared spectrometry can be used as a screening method for the routine analysis of Brazilian honey, with the advantages of being rapid, nondestructive, and accurate.
Resumo:
Biodegradable polyurethanes (PUR) were prepared from polyols derived from castor oil by transesterification of pentaerythritol-modified castor oil and lysine polyisocyanates (LDI and LTI). The polyurethanes obtained were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA). The mechanical behavior of the polyurethanes was measured by Shore A hardness and tensile testing (stress-strain curves). The biodegradable nature of the material was determined by contact angle, water absorption tests, and in vitro degradation in PBS solution. This study aims to examine the effect of the structure and functionality of diisocyanate on the mechanical properties and in vitro degradation of the material. The results were compared with homologous materials obtained from isophorone diisocyanate (IPDI) used in previous works. The objective was to evaluate candidate materials that can be potentially used in tissue engineering.
Resumo:
Cocaine is usually seized mixed with a wide variety of adulterants such as benzocaine, lidocaine, caffeine, and procaine. The forensic identification of cocaine in these street drug mixtures is normally performed using colorimetric testing kits, but these tests may suffer from interferences, producing false-positive results. Here, we describe the use of analytical techniques including attenuated total reflection Fourier transform infrared (ATR-FTIR) and ultraviolet-visible (UV-VIS) spectroscopies to distinguish between cocaine and other adulterants (lidocaine, promethazine, powdered milk and yeast) that yield positive results on the Scott test using the thiocyanate cobalt reagent. A further 13 substances were also analyzed using the Scott test.
Resumo:
Numerous investigations are dedicated to the research and development of new polymer materials destined for innovation in pharmaceutical forms. The application of these technological resources has allowed the commercialization of new therapeutic systems for modified drug release. This investigation aimed to evaluate the association of modified chondroitin sulfate with an insoluble polymer, Eudragit® RS 30 D, widely available in the pharmaceutical market. Isolated films were prepared by the evaporation process using a Teflon® plate. The aqueous dispersions (4% m/v) of synthetic polymer received the addition of modified chondroitin sulfate at different ratios. The interactions of the polymer chains in the blends were physicochemically characterized by means of Fourier transform infrared spectroscopy, thermal analyses, differential scanning calorimetry, thermogravimetry and scanning electron microscopy combined with hydration and assays in alkaline pH. The results showed appropriate properties of the coating materials for solid oral forms intended for drug deliver in specific environments.
Resumo:
The global energy scenario is currently a widely discussed topic, with growing concern about the future supplies. Thus, much attention has been dedicated to the utilization of biomass as an energy resource. In this respect, orange peel has become a material of great interest, especially to Brazil, which generates around 9.5 million tons of this waste per year. To this end, the authors studied the kinetics of the thermal processing of dried orange peel in inert and oxidizing atmosphere. The thermodynamic parameters were determined by the Ozawa-Flynn-Wall method for the global process observed during heating from the 25°C up to 800°C. The thermal analysis in air and nitrogen showed 3-2 stages of mass loss, respectively, with approximately 20% residual mass under a nitrogen atmosphere. The increase in the values of activation energy for the conversion points between 20% and 60% for thermal effects in air and nitrogen atmosphere was observed. The activation energy obtained in an oxidizing atmosphere was higher than that obtained under a nitrogen atmosphere. The fourier-transform infrared spectroscopy and X-ray diffraction analysis showed that the material has a high level of complexity with the presence of alkali and alkaline earth groups as well as phosphate, plus substances such as pectin, cellulose and lignin.
Resumo:
Resorcinol-formaldehyde (RF) organic gels have been extensively used to produce carbon aerogels. The organic gel synthesis parameters greatly affect the structure of the resulting aerogel. In this study, the influence of the catalyst quantity on the polymeric solution sol-gel process was investigated. Sodium carbonate was used as a basic catalyst. RF gels were synthesized with a resorcinol to formaldehyde molar ratio of 0.5, a resorcinol to catalyst (R/C) molar ratio equal to 50 or 300, and a resorcinol to solvent ratio of 0.1 g mL-1. The sol-gel process was evaluated in situ by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor and measurements of the kinematic viscosity. The techniques showed the evolution of the sol-gel process, and the results showed that the lower catalyst quantity induced a higher gel point, with a lower viscosity at the gel point. Differential scanning calorimetry was used to investigate the thermal behavior of the RF dried gel, and results showed that the exothermic event related to the curing process was shifted to higher temperatures for solutions containing higher R/C ratios.
Resumo:
Drug trafficking and the introduction of new drugs onto the illicit market are one of the main challenges of the forensic community. In this study, the chemical profile of a new designer drug, 2-(4-iodine-2,5-dimethoxyphenyl)-n-[(2-methoxyphenyl)methyl]etamine or 25I-NBOMe was explored using thin layer chromatography (TLC), ultraviolet-visible spectrophotometry (UV-Vis), attenuated total reflection with Fourier transform infrared spectroscopy(ATR-FTIR), gas chromatography mass spectrometry (GC-MS) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS). First, the TLC technique was effective for identifying spots related to 25C-, 25B- and 25I-NBOMe compounds, all with the same retention factor, Rf ≈ 0.50. No spot was detected for 2,5-dimethoxy-4-bromoamphetamine, 2,5-Dimethoxy-4-chloroamphetamine or lysergic acid diethylamide compounds. ATR-FTIR preserved the physical-chemical properties of the material, whereas GC-MS and ESI-MS showed better analytical selectivity. ESI(+)FT-ICR MS was used to identify the exact mass (m/z428.1706 for the [M + H]+ ion), molecular formula (M = C18H22INO3), degree of unsaturation (DBE = 8) and the chemical structure (from collision induced dissociation, CID, experiments) of the 25I-NBOMe compound. Furthermore, the ATR-FTIR and CID results suggested the presence of isomers, where a second structure is proposed as an isomer of the 25I-NBOMe molecule.
Resumo:
The topic of this thesis is the simulation of a combination of several control and data assimilation methods, meant to be used for controlling the quality of paper in a paper machine. Paper making is a very complex process and the information obtained from the web is sparse. A paper web scanner can only measure a zig zag path on the web. An assimilation method is needed to process estimates for Machine Direction (MD) and Cross Direction (CD) profiles of the web. Quality control is based on these measurements. There is an increasing need for intelligent methods to assist in data assimilation. The target of this thesis is to study how such intelligent assimilation methods are affecting paper web quality. This work is based on a paper web simulator, which has been developed in the TEKES funded MASI NoTes project. The simulator is a valuable tool in comparing different assimilation methods. The thesis contains the comparison of four different assimilation methods. These data assimilation methods are a first order Bayesian model estimator, an ARMA model based on a higher order Bayesian estimator, a Fourier transform based Kalman filter estimator and a simple block estimator. The last one can be considered to be close to current operational methods. From these methods Bayesian, ARMA and Kalman all seem to have advantages over the commercial one. The Kalman and ARMA estimators seems to be best in overall performance.
Resumo:
Identification of product requirements and quality, together with the management of production are key issues in chemical engineering. Quality control of crystalline products is part of the quality of many industrially manufactured products like paper, paintings, medicines and fertilizers. In most crystallization cases, quality is described with the size, polymorph, shape and purity of the crystal. The chemical composition, hydrodynamics and driving force, together with the operating temperature are in a key position when the properties of a crystalline product are controlled with the crystallization process. This study concentrates on managing the identified properties of a crystalline product with the control of a driving force. The controlling of the driving force can be based on the change of solubility or the change of concentration. Solubility can be changed with temperature, pressure and an antisolvent. The concentration of crystallizing compound, the solute can be changed with the evaporation of the solvent and with the addition of a reagent. The present study focuses on reagent addition and temperature change as methods of changing the level of the driving force. Three control structures for direct control of supersaturation are built, one for cooling crystallization and two for reactive crystallization. Closed loop feedback control structures are based on the measurement of the solute concentration with attenuated total reflection - Fourier transform infrared spectrometer. The details of the reagent feed are analyzed with experimental studies and with results of computational fluid dynamic simulations of the inert particle pulse in the premixer and inert particle injection to the mixing tank. Nucleation in conditions of controlled reactive crystallization is analyzed with Nielsen’s equation of homogeneous nucleation. The resulting control systems, based on regulation of supersaturation, can be used to produce the desired polymorph of an organic product. The polymorph composition of product crystals is controlled repeatably with the decision of a set value of supersaturation level.
Resumo:
Cutin and suberin are structural and protective polymers of plant surfaces. The epidermal cells of the aerial parts of plants are covered with an extracellular cuticular layer, which consists of polyester cutin, highly resistant cutan, cuticular waxes and polysaccharides which link the layer to the epidermal cells. A similar protective layer is formed by a polyaromatic-polyaliphatic biopolymer suberin, which is present particularly in the cell walls of the phellem layer of periderm of the underground parts of plants (e.g. roots and tubers) and the bark of trees. In addition, suberization is also a major factor in wound healing and wound periderm formation regardless of the plants’ tissue. Knowledge of the composition and functions of cuticular and suberin polymers is important for understanding the physiological properties for the plants and for nutritional quality when these plants are consumed as foods. The aims of the practical work were to assess the chemical composition of cuticular polymers of several northern berries and seeds and suberin of two varieties of potatoes. Cutin and suberin were studied as isolated polymers and further after depolymerization as soluble monomers and solid residues. Chemical and enzymatic depolymerization techniques were compared and a new chemical depolymerization method was developed. Gas chromatographic analysis with mass spectrometric detection (GC-MS) was used to assess the monomer compositions. Polymer investigations were conducted with solid state carbon-13 cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (13C CP-MAS NMR), Fourier transform infrared spectroscopy (FTIR) and microscopic analysis. Furthermore, the development of suberin over one year of post-harvest storage was investigated and the cuticular layers from berries grown in the North and South of Finland were compared. The results show that the amounts of isolated cuticular layers and cutin monomers, as well as monomeric compositions vary greatly between the berries. The monomer composition of seeds was found to differ from the corresponding berry peel monomers. The berry cutin monomers were composed mostly of long-chain aliphatic ω-hydroxy acids, with various mid-chain functionalities (double-bonds, epoxy, hydroxy and keto groups). Substituted α,ω-diacids predominated over ω-hydroxy acids in potato suberin monomers and slight differences were found between the varieties. The newly-developed closed tube chemical method was found to be suitable for cutin and suberin analysis and preferred over the solvent-consuming and laborious reflux method. Enzymatic hydrolysis with cutinase was less effective than chemical methanolysis and showed specificity towards α,ω-diacid bonds. According to 13C CP-MAS NMR and FTIR, the depolymerization residues contained significant amounts of aromatic structures, polysaccharides and possible cutan-type aliphatic moieties. Cultivation location seems to have effect on cuticular composition. The materials studied contained significant amounts of different types of biopolymers that could be utilized for several purposes with or without further processing. The importance of the so-called waste material from industrial processes of berries and potatoes as a source of either dietary fiber or specialty chemicals should be further investigated in detail. The evident impact of cuticular and suberin polymers, among other fiber components, on human health should be investigated in clinical trials. These by-product materials may be used as value-added fiber fractions in the food industry and as raw materials for specialty chemicals such as lubricants and emulsifiers, or as building blocks for novel polymers.
Resumo:
The paper industry is constantly looking for new ideas for improving paper products while competition and raw material prices are increasing. Many paper products are pigment coated. Coating layer is the top layer of paper, thus by modifying coating pigment also the paper itself can be altered and value added to the final product. In this thesis, synthesis of new plastic and hybrid pigments and their performance in paper and paperboard coating is reported. Two types of plastic pigments were studied: core-shell latexes and solid beads of maleimide copolymers. Core-shell latexes with partially crosslinked hydrophilic polymer core of poly(n-butyl acrylate-co-methacrylic acid) and a hard hydrophobic polystyrene shell were prepared to improve the optical properties of coated paper. In addition, the effect of different crosslinkers was analyzed and the best overall performance was achieved by the use of ethylene glycol dimethacrylate (EGDMA). Furthermore, the possibility to modify core-shell latex was investigated by introducing a new polymerizable optical brightening agent, 1-[(4-vinylphenoxy)methyl]-4-(2-henylethylenyl)benzene which gave promising results. The prepared core-shell latex pigments performed smoothly also in pilot coating and printing trials. The results demonstrated that by optimizing polymer composition, the optical and surface properties of coated paper can be significantly enhanced. The optimal reaction conditions were established for thermal imidization of poly(styrene-co-maleimide) (SMI) and poly(octadecene-co-maleimide) (OMI) from respective maleic anhydride copolymer precursors and ammonia in a solvent free process. The obtained aqueous dispersions of nanoparticle copolymers exhibited glass transition temperatures (Tg) between 140-170ºC and particle sizes from 50-230 nm. Furthermore, the maleimide copolymers were evaluated in paperboard coating as additional pigments. The maleimide copolymer nanoparticles were partly imbedded into the porous coating structure and therefore the full potential of optical property enhancement for paperboard was not achieved by this method. The possibility to modify maleimide copolymers was also studied. Modifications were carried out via N-substitution by replacing part of the ammonia in the imidization reaction with amines, such as triacetonediamine (TAD), aspartic acid (ASP) and fluorinated amines (2,2,2- trifluoroethylamine, TFEA and 2,2,3,3,4,4,4-heptafluorobuthylamine, HFBA). The obtained functional nanoparticles varied in size between 50-217 nm and their Tg from 150-180ºC. During the coating process the produced plastic pigments exhibited good runnability. No significant improvements were achieved in light stability with TAD modified copolymers whereas nanoparticles modified with aspartic acid and those containing fluorinated groups showed the desired changes in surface properties of the coated paperboard. Finally, reports on preliminary studies with organic-inorganic hybrids are presented. The hybrids prepared by an in situ polymerization reaction consisted of 30 wt% poly(styrene- co-maleimide) (SMI) and high levels of 70 wt% inorganic components of kaolin and/or alumina trihydrate. Scanning Electron Microscopy (SEM) images and characterization by Fourier Transform Infrared Spcetroscopy (FTIR) and X-Ray Diffraction (XRD) revealed that the hybrids had conventional composite structure and inorganic components were covered with precipitated SMI nanoparticles attached to the surface via hydrogen bonding. In paper coating, the hybrids had a beneficial effect on increasing gloss levels.