880 resultados para Forecasting and replenishment (CPFR)
Resumo:
INTRODUCTION: Labour is considered to be one of the most painful and significant experiences in a woman's life. The aim of this study was to examine whether women's attachment style is a predictor of the pain experienced throughout labour and post-delivery. MATERIAL AND METHODS:Thirty-two pregnant women were assessed during the third trimester of pregnancy and during labour. Adult attachment was assessed with the Adult Attachment Scale ' Revised. The perceived intensity of labour pain was measured using a visual analogue scale for pain in the early stage of labour, throughout labour and post-delivery. RESULTS:Women with an insecure attachment style reported more pain at 3 cm of cervical dilatation (p < 0.05), before the administration of analgesia (p < 0.01) and post-delivery (p < 0.05) than those securely attached. In multivariate models, attachment style was a significant predictor of labour pain at 3 cm of cervical dilatation and before the first administration of analgesia but not of the perceived pain post-delivery. DISCUSSION: These findings confirm that labour pain is influenced by relevant psychological factors and suggest that a woman's attachment style may be a risk factor for greater pain during labour. CONCLUSION:Future studies in the context of obstetric pain may consider the attachment style as an indicator of individual differences in the pain response during labour. This may have important implications in anaesthesiology and to promote a relevant shift in institutional practices and therapeutic procedures.
Resumo:
Cardiovascular diseases and in particular heart failure are major causes of morbidity and mortality in the Western world. Recently, the notion of promoting cardiac regeneration as a means to replace lost cardiomyocytes in the damaged heart has engendered considerable research interest. These studies envisage the utilization of both endogenous and exogenous cellular populations, which undergo highly specialized cell fate transitions to promote cardiomyocyte replenishment. Such transitions are under the control of regenerative gene regulatory networks, which are enacted by the integrated execution of specific transcriptional programs. In this context, it is emerging that the non-coding portion of the genome is dynamically transcribed generating thousands of regulatory small and long non-coding RNAs, which are central orchestrators of these networks. In this review, we discuss more particularly the biological roles of two classes of regulatory non-coding RNAs, i.e. microRNAs and long non-coding RNAs, with a particular emphasis on their known and putative roles in cardiac homeostasis and regeneration. Indeed, manipulating non-coding RNA-mediated regulatory networks could provide keys to unlock the dormant potential of the mammalian heart to regenerate. This should ultimately improve the effectiveness of current regenerative strategies and discover new avenues for repair. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Transcatheter aortic valve implantation (TAVI): state of the art techniques and future perspectives.
Resumo:
Transcatheter aortic valve therapies are the newest established techniques for the treatment of high risk patients affected by severe symptomatic aortic valve stenosis. The transapical approach requires a left anterolateral mini-thoracotomy, whereas the transfemoral method requires an adequate peripheral vascular access and can be performed fully percutaneously. Alternatively, the trans-subclavian access has been recently proposed as a third promising approach. Depending on the technique, the fine stent-valve positioning can be performed with or without contrast injections. The transapical echo-guided stent-valve implantation without angiography (the Lausanne technique) relies entirely on transoesophageal echocardiogramme imaging for the fine stent-valve positioning and it has been proved that this technique prevents the onset of postoperative contrast-related acute kidney failure. Recent published reports have shown good hospital outcomes and short-term results after transcatheter aortic valve implantation, but there are no proven advantages in using the transfemoral or the transapical technique. In particular, the transapical series have a higher mean logistic Euroscore of 27-35%, a procedural success rate above 95% and a mean 30-day mortality between 7.5 and 17.5%, whereas the transfemoral results show a lower logistic Euroscore of 23-25.5%, a procedural success rate above 90% and a 30-day mortality of 7-10.8%. Nevertheless, further clinical trials and long-term results are mandatory to confirm this positive trend. Future perspectives in transcatheter aortic valve therapies would be the development of intravascular devices for the ablation of the diseased valve leaflets and the launch of new stent-valves with improved haemodynamic, different sizes and smaller delivery systems.
Resumo:
QUESTIONS UNDER STUDY: Since tumour burden consumes substantial healthcare resources, precise cancer incidence estimations are pivotal to define future needs of national healthcare. This study aimed to estimate incidence and mortality rates of oesophageal, gastric, pancreatic, hepatic and colorectal cancers up to 2030 in Switzerland. METHODS: Swiss Statistics provides national incidences and mortality rates of various cancers, and models of future developments of the Swiss population. Cancer incidences and mortality rates from 1985 to 2009 were analysed to estimate trends and to predict incidence and mortality rates up to 2029. Linear regressions and Joinpoint analyses were performed to estimate the future trends of incidences and mortality rates. RESULTS: Crude incidences of oesophageal, pancreas, liver and colorectal cancers have steadily increased since 1985, and will continue to increase. Gastric cancer incidence and mortality rates reveal an ongoing decrease. Pancreatic and liver cancer crude mortality rates will keep increasing, whereas colorectal cancer mortality on the contrary will fall. Mortality from oesophageal cancer will plateau or minimally increase. If we consider European population-standardised incidence rates, oesophageal, pancreatic and colorectal cancer incidences are steady. Gastric cancers are diminishing and liver cancers will follow an increasing trend. Standardised mortality rates show a diminution for all but liver cancer. CONCLUSIONS: The oncological burden of gastrointestinal cancer will significantly increase in Switzerland during the next two decades. The crude mortality rates globally show an ongoing increase except for gastric and colorectal cancers. Enlarged healthcare resources to take care of these complex patient groups properly will be needed.
Resumo:
For the past 20 years, researchers have applied the Kalman filter to the modeling and forecasting the term structure of interest rates. Despite its impressive performance in in-sample fitting yield curves, little research has focused on the out-of-sample forecast of yield curves using the Kalman filter. The goal of this thesis is to develop a unified dynamic model based on Diebold and Li (2006) and Nelson and Siegel’s (1987) three-factor model, and estimate this dynamic model using the Kalman filter. We compare both in-sample and out-of-sample performance of our dynamic methods with various other models in the literature. We find that our dynamic model dominates existing models in medium- and long-horizon yield curve predictions. However, the dynamic model should be used with caution when forecasting short maturity yields
Resumo:
The Meese-Rogoff forecasting puzzle states that foreign exchange (FX) rates are unpredictable. Since one country’s macroeconomic conditions could affect the price of its national currency, we study the dynamic relations between the FX rates and some macroeconomic accounts. Our research tests whether the predictability of the FX rates could be improved through the advanced econometrics. Improving the predictability of the FX rates has important implications for various groups including investors, business entities and the government. The present thesis examines the dynamic relations between the FX rates, savings and investments for a sample of 25 countries from the Organization for Economic Cooperation and Development. We apply quarterly data of FX rates, macroeconomic indices and accounts including the savings and the investments over three decades. Through preliminary Augmented Dickey-Fuller unit root tests and Johansen cointegration tests, we found that the savings rate and the investment rate are cointegrated with the vector (1,-1). This result is consistent with many previous studies on the savings-investment relations and therefore confirms the validity of the Feldstein-Horioka puzzle. Because of the special cointegrating relation between the savings rate and investment rate, we introduce the savings-investment rate differential (SID). Investigating each country through a vector autoregression (VAR) model, we observe extremely insignificant coefficient estimates of the historical SIDs upon the present FX rates. We also report similar findings through the panel VAR approach. We thus conclude that the historical SIDs are useless in forecasting the FX rate. Nonetheless, the coefficients of the past FX rates upon the current SIDs for both the country-specific and the panel VAR models are statistically significant. Therefore, we conclude that the historical FX rates can conversely predict the SID to some degree. Specifically, depreciation in the domestic currency would cause the increase in the SID.
Resumo:
In an economy where cash can be stored costlessly (in nominal terms), the nominal interest rate is bounded below by zero. This paper derives the implications of this nonnegativity constraint for the term structure and shows that it induces a nonlinear and convex relation between short- and long-term interest rates. As a result, the long-term rate responds asymmetrically to changes in the short-term rate, and by less than predicted by a benchmark linear model. In particular, a decrease in the short-term rate leads to a decrease in the long-term rate that is smaller in magnitude than the increase in the long-term rate associated with an increase in the short-term rate of the same size. Up to the extent that monetary policy acts by affecting long-term rates through the term structure, its power is considerably reduced at low interest rates. The empirical predictions of the model are examined using data from Japan.
Resumo:
This note develops general model-free adjustment procedures for the calculation of unbiased volatility loss functions based on practically feasible realized volatility benchmarks. The procedures, which exploit the recent asymptotic distributional results in Barndorff-Nielsen and Shephard (2002a), are both easy to implement and highly accurate in empirically realistic situations. On properly accounting for the measurement errors in the volatility forecast evaluations reported in Andersen, Bollerslev, Diebold and Labys (2003), the adjustments result in markedly higher estimates for the true degree of return-volatility predictability.
Resumo:
Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.
Resumo:
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.
Resumo:
This doctoral thesis addresses the growing concern about the significant changes in the climatic and weather patterns due to the aerosol loading that have taken place in the Indo Gangetic Plain(IGP)which includes most of the Northern Indian region. The study region comprises of major industrial cities in India (New Delhi, Kanpur, Allahabad, Jamshedpur and Kolkata). Northern and central parts of India are one of the most thickly populated areas in the world and have the most intensely farmed areas. Rapid increase in population and urbanization has resulted in an abrupt increase in aerosol concentrations in recent years. The IGP has a major source of coal; therefore most of the industries including numerous thermal power plants that run on coal are located around this region. They inject copious amount of aerosols into the atmosphere. Moreover, the transport of dust aerosols from arid locations is prevalent during the dry months which increase the aerosol loading in theatmosphere. The topography of the place is also ideal for the congregation of aerosols. It is bounded by the Himalayas in the north, Thar Desert in the west, the Vindhyan range in the south and Brahmaputra ridge in the east. During the non‐monsoon months (October to May) the weather in the location is dry with very little rainfall. Surface winds are weak during most of the time in this dry season. The aerosols that reach the location by means of long distance transport and from regional sources get accumulated under these favourable conditions. The increase in aerosol concentration due to the complex combination of aerosol transport and anthropogenic factors mixed with the contribution from the natural sources alters the optical properties and the life time of clouds in the region. The associated perturbations in radiative balance have a significant impact on the meteorological parameters and this in turn determines the precipitation forming process. Therefore, any change in weather which disturbs the normal hydrological pattern is alarming in the socio‐economic point of view. Hence, the main focus of this work is to determine the variation in transport and distribution of aerosols in the region and to understand the interaction of these aerosols with meteorological parameters and cloud properties.
Resumo:
We propose a novel, simple, efficient and distribution-free re-sampling technique for developing prediction intervals for returns and volatilities following ARCH/GARCH models. In particular, our key idea is to employ a Box–Jenkins linear representation of an ARCH/GARCH equation and then to adapt a sieve bootstrap procedure to the nonlinear GARCH framework. Our simulation studies indicate that the new re-sampling method provides sharp and well calibrated prediction intervals for both returns and volatilities while reducing computational costs by up to 100 times, compared to other available re-sampling techniques for ARCH/GARCH models. The proposed procedure is illustrated by an application to Yen/U.S. dollar daily exchange rate data.
Resumo:
The present investigation on “Coconut Phenology and Yield Response to Climate Variability and Change” was undertaken at the experimental site, at the Regional Station, Coconut Development Board, KAU Campus, Vellanikkara. Ten palms each of eight-year-old coconut cultivars viz., Tiptur Tall, Kuttiadi (WCT), Kasaragod (WCT) and Komadan (WCT) were randomly selected.The study therefore, reinforces our traditional knowledge that the coconut palm is sensitive to changing weather conditions during the period from primordium initiation to harvest of nuts (about 44 months). Absence of rainfall from December to May due to early withdrawal of northeast monsoon, lack of pre monsoon showers and late onset of southwest monsoon adversely affect the coconut productivity to a considerable extent in the following year under rainfed conditions. The productivity can be increased by irrigating the coconut palm during the dry periods.Increase in temperature, aridity index, number of severe summer droughts and decline in rainfall and moisture index were the major factors for a marginal decline or stagnation in coconut productivity over a period of time, though various developmental schemes were in operation for sustenance of coconut production in the State of Kerala. It can be attributed to global warming and climate change. Therefore, there is a threat to coconut productivity in the ensuing decades due to climate variability and change. In view of the above, there is an urgent need for proactive measures as a part of climate change adaptation to sustain coconut productivity in the State of Kerala.The coconut productivity is more vulnerable to climate variability such as summer droughts rather than climate change in terms of increase in temperature and decline in rainfall, though there was a marginal decrease (1.6%) in the decade of 1981-2009 when compared to that of 1951-80. This aspect needs to be examined in detail by coconut development agencies such as Coconut Development Board and State Agriculture Department for remedial measures. Otherwise, the premier position of Kerala in terms of coconut production is likely to be lost in the ensuing years under the projected climate change scenario. Among the four cultivars studied, Tiptur Tall appears to be superior in terms of reproduction phase and nut yield. This needs to be examined by the coconut breeders in their crop improvement programme as a part of stress tolerant under rainfed conditions. Crop mix and integrated farming are supposed to be the best combination to sustain development in the long run under the projected climate change scenarios. Increase in coconut area under irrigation during summer with better crop management and protection measures also are necessary measures to increase coconut productivity since the frequency of intensity of summer droughts is likely to increase under projected global warming scenario.
Resumo:
present work deals with the various aspects of population characteristics of penaeus indicus ,Metapenaeus dobsoni and metapenaeus monoceros during their nursery phase in tidal ponds and adjacent backwaters.Importance of the present study is to suggest scientific basis for the management of penaeid resources in tidal ponds and backwaters based on their biological characteristics to ensure better yield.Seasonal closure of fishing will be effective in improving the size of the shrimp at harvest.Hydrology of tidal ponds varied with location, but showed a common seasonal pattem.Seasonal variation in temperature was very small. It fluctuated between 27.5 to 32.3°C in tidalponds and 26.9 to 29.9°C in open backwaters.Improvement of nursery habitats with due consideration for biological requirements of the resource will ensure better growth, survival and abundance of the stock.The recruitment, growth and emigration data of prawns from their nurseries can be used successfully for fishery forecasting. projecting juvenile growth forward through time, it is possible to establish, which cohort contributes to offshore fishery each year. So, by interpreting the recruitment and growth data of species in their nurseries with offshore catch data, fishery can be forecasted successfully.
Resumo:
This thesis Entitled Stochastic modelling and analysis.This thesis is divided into six chapters including this introductory chapter. In second chapter, we consider an (s,S) inventory model with service, reneging of customers and finite shortage of items.In the third chapter, we consider an (s,S) inventoiy system with retrial of customers. Arrival of customers forms a Poisson process with rate. When the inventory level depletes to s due to demands, an order for replenishment is placed.In Chapter 4, we analyze and compare three (s,S) inventory systems with positive service time and retrial of customers. In all these systems, arrivals of customers form a Poisson process and service times are exponentially distributed. In chapter 5, we analyze and compare three production inventory systems with positive service time and retrial of customers. In all these systems, arrivals of customers form a Poisson process and service times are exponentially distributed.In chapter 6, we consider a PH /PH /l inventory model with reneging of customers and finite shortage of items.