959 resultados para Fluid dynamics -- Computer simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through the analyses of the Miyazawa-Jernigan matrix it has been shown that the hydrophobic effect generates the dominant driving force for protein folding. By using both lattice and off-lattice models, it is shown that hydrophobic-type potentials are indeed efficient in inducing the chain through nativelike configurations, but they fail to provide sufficient stability so as to keep the chain in the native state. However, through comparative Monte Carlo simulations, it is shown that hydrophobic potentials and steric constraints are two basic ingredients for the folding process. Specifically, it is shown that suitable pairwise steric constraints introduce strong changes on the configurational activity, whose main consequence is a huge increase in the overall stability condition of the native state; detailed analysis of the effects of steric constraints on the heat capacity and configurational activity are provided. The present results support the view that the folding problem of globular proteins can be approached as a process in which the mechanism to reach the native conformation and the requirements for the globule stability are uncoupled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of a dispersion-managed soliton in two-dimensional nonlinear Schrodinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct partial differential equation (PDE) and ordinary differential equation (ODE) simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a simple mathematical model of a wind turbine supporting tower. Here, the wind excitation is considered to be a non-ideal power source. In such a consideration, there is interaction between the energy supply and the motion of the supporting structure. If power is not enough, the rotation of the generator may get stuck at a resonance frequency of the structure. This is a manifestation of the so-called Sommerfeld Effect. In this model, at first, only two degrees of freedom are considered, the horizontal motion of the upper tip of the tower, in the transverse direction to the wind, and the generator rotation. Next, we add another degree of freedom, the motion of a free rolling mass inside a chamber. Its impact with the walls of the chamber provides control of both the amplitude of the tower vibration and the width of the band of frequencies in which the Sommerfeld effect occur. Some numerical simulations are performed using the equations of motion of the models obtained via a Lagrangian approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explains why the reliability assessment of energy limited systems requires more detailed models for primary generating resources availability, internal and external generating dispatch and customer demand than the ones commonly used for large power systems and presents a methodology based on the full sequential Montecarlo simulation technique with AC power flow for their long term reliability assessment which can properly include these detailed models. By means of a real example, it is shown how the simplified modeling traditionally used for large power systems leads to pessimistic predictions if it is applied to an energy limited system and also that it cannot predict all the load point adequacy problems. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of effects is attributed to the photo stimulation of tissues, such as improved healing of ulcers, analgesic and anti-inflammatory effects, stimulation of the proliferation of cells of different origins and stimulation of bone repair. Some investigations that make qualitative evaluations, like wound healing and evaluation of pain and edema, can be conducted in human subjects. However, deeper investigations on the mechanisms of action of the light stimulus and other quantitative works that requires biopsies or destructive analysis has to be carried out in animal models or in cell cultures. In this work, we propose the use of planarians as a model to study laser-tissue interaction. Contrasting with cell cultures and unicellular organisms, planarians are among the simplest organism having tissue layers, central nerve system, digestive and excretory system that might have been platforms for the evolution of the complex and highly organized tissues and organs found in higher organisms. For the present study, 685 nm laser radiation was employed. Planarians were cut transversally, in a plane posterior to the auricles. The body fragments were left to regenerate and the proliferation dynamics of stem cells was studied by using histological analysis. Maximum cell count was obtained for the laser treated group at the 4th experimental day. At that experimental time, we also had the largest difference between the irradiated and the non-irradiated control group. We concluded that the studied flatworm could be an interesting animal model for in vivo studies of laser-tissue interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of self-adaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this article is to apply the Design of experiments technique along with the Discrete Events Simulation technique in an automotive process. The benefits of the design of experiments in simulation include the possibility to improve the performance in the simulation process, avoiding trial and error to seek solutions. The methodology of the conjoint use of Design of Experiments and Computer Simulation is presented to assess the effects of the variables and its interactions involved in the process. In this paper, the efficacy of the use of process mapping and design of experiments on the phases of conception and analysis are confirmed. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In practical situations, the dynamics of the forcing function on a vibrating system cannot be considered as given a priori, and it must be taken as a consequence of the dynamics of the whole system. In other words, the forcing source has limited power, as that provided by a DC motor for an example, and thus its own dynamics is influenced by that of the vibrating system being forced. This increases the number of degrees of freedom of the problem, and it is called a non-ideal problem. In this work, we considerer two non-ideal problems analyzed by using numerical simulations. The existence of the Sommerfeld effect was verified, that is, the effect of getting stuck at resonance (energy imparted to the DC motor being used to excite large amplitude motions of the supporting structure). We considered two kinds of non-ideal problem: one related to the transverse vibrations of a shaft carrying two disks and another to a piezoceramic bar transducer powered by a vacuum tube generated by a non-ideal source Copyright © 2007 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a mathematical model is derived via Lagrange's Equation for a shear building structure that acts as a foundation of a non-ideal direct current electric motor, controlled by a mass loose inside a circular carving. Non-ideal sources of vibrations of structures are those whose characteristics are coupled to the motion of the structure, not being a function of time only as in the ideal case. Thus, in this case, an additional equation of motion is written, related to the motor rotation, coupled to the equation describing the horizontal motion of the shear building. This kind of problem can lead to the so-called Sommerfeld effect: steady state frequencies of the motor will usually increase as more power (voltage) is given to it in a step-by-step fashion. When a resonance condition with the structure is reached, the better part of this energy is consumed to generate large amplitude vibrations of the foundation without sensible change of the motor frequency as before. If additional increase steps in voltage are made, one may reach a situation where the rotor will jump to higher rotation regimes, no steady states being stable in between. As a device of passive control of both large amplitude vibrations and the Sommerfeld effect, a scheme is proposed using a point mass free to bounce back and forth inside a circular carving in the suspended mass of the structure. Numerical simulations of the model are also presented Copyright © 2007 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to study the cropping system as complex one, applying methods from theory of dynamic systems and from the control theory to the mathematical modeling of the biological pest control. The complex system can be described by different mathematical models. Based on three models of the pest control, the various scenarios have been simulated in order to obtain the pest control strategy only through natural enemies' introduction. © 2008 World Scientific Publishing Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this article is to apply the Design of Experiments technique along with the Discrete Events Simulation technique in an automotive process. The benefits of the design of experiments in simulation include the possibility to improve the performance in the simulation process, avoiding trial and error to seek solutions. The methodology of the conjoint use of Design of Experiments and Computer Simulation is presented to assess the effects of the variables and its interactions involved in the process. In this paper, the efficacy of the use of process mapping and design of experiments on the phases of conception and analysis are confirmed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By direct numerical simulation of the time-dependent Gross-Pitaevskii equation, we study different aspects of the localization of a noninteracting ideal Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential. Such a quasiperiodic potential, used in a recent experiment on the localization of a BEC, can be formed by the superposition of two standing-wave polarized laser beams with different wavelengths. We investigate the effect of the variation of optical amplitudes and wavelengths on the localization of a noninteracting BEC. We also simulate the nonlinear dynamics when a harmonically trapped BEC is suddenly released into a quasiperiodic potential, as done experimentally in a laser speckle potential. We finally study the destruction of the localization in an interacting BEC due to the repulsion generated by a positive scattering length between the bosonic atoms. © 2009 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SMART material systems offer great possibilities in terms of providing novel and economical solutions to engineering problems. The technological advantages of these materials over traditional ones are due to their unique microstructure and molecular properties. Smart materials such as shape memory alloys (SMA), has been used in such diverse areas of engineering science, nowadays. In this paper, we present a numerical investigation of the dynamics interaction of a nonideal structure (NIS). We analyze the phenomenon of the passage through resonance region in the steady state processes. We remarked that this kind of problem can lead to the so-called Sommerfeld effect: steady state frequencies of the DC motor will usually increase as more power (voltage) is given to it in a step-by-step fashion. When a resonance condition with the structure it is reached, the better part of this energy it is consumed to generate large amplitude vibrations of the foundation without sensible change of the motor frequency as before. The results obtained by using numerical simulations are discussed in details. Copyright © 2009 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The C 2 * radical is used as a system probe tool to the reactive flow diagnostic, and it was chosen due to its large occurrence in plasma and combustion in aeronautics and aerospace applications. The rotational temperatures of C 2 * species were determined by the comparison between experimental and theoretical data. The simulation code was developed by the authors, using C++ language and the object oriented paradigm, and it includes a set of new tools that increase the efficacy of the C 2 * probe to determine the rotational temperature of the system. A brute force approach for the determination of spectral parameters was adopted in this version of the computer code. The statistical parameter c 2 was used as an objective criterion to determine the better match of experimental and synthesized spectra. The results showed that the program works even with low-quality experimental data, typically collected from in situ airborne compact apparatus. The technique was applied to flames of a Bunsen burner, and the rotational temperature of ca. 2100 K was calculated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)