906 resultados para Fisher
Resumo:
The requirement for the use of Virtual Engineering, encompassing the construction of Virtual Prototypes using Multidisciplinary Design Optimisation, for the development of future aerospace platforms and systems is discussed. Some of the activities at the Virtual Engineering Centre, a University of Liverpool initiative, are described and a number of case studies involving a range of applications of Virtual Engineering illustrated.
Resumo:
In this paper we propose a statistical model for detection and tracking of human silhouette and the corresponding 3D skeletal structure in gait sequences. We follow a point distribution model (PDM) approach using a Principal Component Analysis (PCA). The problem of non-lineal PCA is partially resolved by applying a different PDM depending of pose estimation; frontal, lateral and diagonal, estimated by Fisher's linear discriminant. Additionally, the fitting is carried out by selecting the closest allowable shape from the training set by means of a nearest neighbor classifier. To improve the performance of the model we develop a human gait analysis to take into account temporal dynamic to track the human body. The incorporation of temporal constraints on the model increase reliability and robustness.
Resumo:
A nonparametric, small-sample-size test for the homogeneity of two psychometric functions against the left- and right-shift alternatives has been developed. The test is designed to determine whether it is safe to amalgamate psychometric functions obtained in different experimental sessions. The sum of the lower and upper p-values of the exact (conditional) Fisher test for several 2 × 2 contingency tables (one for each point of the psychometric function) is employed as the test statistic. The probability distribution of the statistic under the null (homogeneity) hypothesis is evaluated to obtain corresponding p-values. Power functions of the test have been computed by randomly generating samples from Weibull psychometric functions. The test is free of any assumptions about the shape of the psychometric function; it requires only that all observations are statistically independent. © 2011 Psychonomic Society, Inc.
Resumo:
The structural and magnetic properties of F16CuPc thin films and powder, including x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and theoretical modelling of exchange interactions are reported. Analysis of XRD from films, with thickness ranging between 100 and 160 nm, deposited onto Kapton and a perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) interlayer shows that the stacking angle (defined in the text) of the film is independent of the thickness, but that the texture is modified by both film thickness and substrate chemistry. The SQUID measurements suggest that all samples are paramagnetic, a result that is confirmed by our theoretical modelling including density functional theory calculations of one-dimensional molecular chains and Green's function perturbation theory calculations for a molecular dimer. By investigating theoretically a range of different geometries, we predict that the maximum possible exchange interaction between F16CuPc molecules is twice as large as that in unfluorinated copper-phthalocyanine (CuPc). This difference arises from the smaller intermolecular spacing in F16CuPc. Our density functional theory calculation for isolated F16CuPc molecule also shows that the energy levels of Kohn-Sham orbitals are rigidly shifted similar to 1 eV lower in F16CuPc compared to CuPc without a significant modification of the intramolecular spin physics, and that therefore the two molecules provide a suitable platform for independently varying magnetism and charge transport.
Resumo:
Nanostructure and molecular orientation play a crucial role in determining the functionality of organic thin films. In practical devices, such as organic solar cells consisting of donor-acceptor mixtures, crystallinity is poor and these qualities cannot be readily determined by conventional diffraction techniques, while common microscopy only reveals surface morphology. Using a simple nondestructive technique, namely, continuous-wave electron paramagnetic resonance spectroscopy, which exploits the well-understood angular dependence of the g-factor and hyperfine tensors, we show that in the solar cell blend of C-60 and copper phthalocyanine (CuPc)-for which X-ray diffraction gives no information-the CuPc, and by implication the C-60, molecules form nanoclusters, with the planes of the CuPc molecules oriented perpendicular to the film surface. This information demonstrates that the current nanostructure in CuPc:C-60 solar cells is far from optimal and suggests that their efficiency could be considerably increased by alternative film growth algorithms.
Resumo:
We report on electron paramagnetic resonance (EPR) studies of nitrogen doped diamond that has been N-15 enriched, electron irradiated and annealed. EPR spectra from two new nitrogen containing S = 1/2 defects are detected and labelled WAR9 and WAR10. We show that the properties of these defects are consistent with them being the < 001 >-nitrogen split interstitial and the < 001 >-nitrogen split interstitial-< 001 >-carbon split interstitial pair, respectively. We also provide an explanation for why these defects have previously eluded discovery.
Resumo:
The N-14, N-15, and C-13 hyperfine interactions in the ground state of the negatively charged nitrogen vacancy (NV-) center have been investigated using electron-paramagnetic-resonance spectroscopy. The previously published parameters for the N-14 hyperfine interaction do not produce a satisfactory fit to the experimental NV- electron-paramagnetic-resonance data. The small anisotropic component of the NV- hyperfine interaction can be explained from dipolar interaction between the nitrogen nucleus and the unpaired-electron probability density localized on the three carbon atoms neighboring the vacancy. Optical spin polarization of the NV- ground state was used to enhance the electron-paramagnetic-resonance sensitivity enabling detailed study of the hyperfine interaction with C-13 neighbors. The data confirmed the identification of three equivalent carbon nearest neighbors but indicated the next largest C-13 interaction is with six, rather than as previously assumed three, equivalent neighboring carbon atoms.
Resumo:
Despite the numerous experimental and theoretical studies on the negatively charged nitrogen vacancy center (NV-) in diamond and the predictions that the neutral nitrogen vacancy center (NV0) should have an S=1/2 ground state, NV0 has not previously been detected by electron paramagnetic resonance (EPR). We report new EPR data on a trigonal nitrogen-containing defect in diamond with an S=3/2 excited state populated via optical excitation. Analysis of the spin Hamiltonian parameters and the wavelength dependence of the optical excitation leads to assignment of this S=3/2 state to the (4)A(2) excited state of NV0. This identification, together with an examination of the electronic structure of the NV centers in diamond, provides a plausible explanation for the lack of observation (to date) of an EPR signal from the NV0 ground state.
Resumo:
Aim: To evaluate the role of macrophages in the development of posterior capsule opacification (PCO). Methods: For this purpose, an extracapsular lens extraction was performed in 18 consecutive Sprague-Dawley rats. Animals were treated with liposomal clodronate (Cl MDP-lip-treated group, n = 10) or phosphate-buffered saline (PBS) (control group, n = 8) 1 day preoperatively and on the first day postoperatively, and sacrificed 3 days postoperatively. Masked clinical, light microscopy and immunohistochemistry studies were conducted. The Fisher exact test and randomisation test were used to assess statistically differences between groups. Results: A statistically significant reduction in the number of macrophages (ED1+, ED7+, ED8+) was found in the Cl MDP-lip-treated group compared with the PBS-lip-treated group (p = 0.048, p = 0.004, p = 0.027, respectively). There were no statistically significant differences with regards to the presence/absence of central opacification (p = 0.29) and capsular wrinkling (p = 0.21) as detected clinically between groups. Similarly, a qualitative evaluation of the degree of PCO with regards to lens epithelial cell (LEC) proliferation, capsular wrinkling and Soemmerring ring formation showed no statistically significance between groups (p = 0.27, p = 0.061, p = 1.0, respectively). However, a statistically significant reduction in the number of lens epithelial cells (LEC) counted in the centre of the posterior capsule was found in the Cl MDP-lip- treated group (p = 0.009). Conclusion: Depletion of macrophages was accompanied by a reduction in LEC in the centre of the posterior capsule in rodents.
Resumo:
The metallo-phthalocyanines (MPcs) are an interesting group of organic semiconductor materials for applications such as large area solar cells due to their optoelectronic properties coupled with the possibility of easily and cheaply fabricating thin films of MPcs [1, 2]. As for organic semiconductors in general, many of the interesting properties of the MPcs such as magnetism, light absorption and charge transport, are highly anisotropic [2, 3]. To maximise the efficiency of a device based on these materials it is therefore important to study their molecular orientation in films and to assess the influence of different growth conditions and substrate treatments.
X-ray diffraction is a well established and powerful technique for studying texture (and hence molecular orientation) in crystalline materials, but it cannot provide any information about amorphous or nanocrystalline films. In electron paramagnetic resonance (EPR) spectroscopy the signal comes from the spin of unpaired electrons in the material. This technique therefore does not require the sample to be crystalline. It works for any sample with paramagnetic centres such as the MPcs where the unpaired electrons are contributed by the metal. In this paper we present a continuous-wave X-band EPR study using the anisotropy of the EPR spectrum of CuPc [4] to determine the orientation effects in different types of CuPc films. From these measurements we gain insight into the molecular arrangement of films with different spin concentrations, and apply our technique to the study of molecular orientation in photovoltaic cells.
Resumo:
Organic semiconductors have already found commercial applications in for example displays with organic light-emitting diodes (OLEDs) and great advances are also being made in other areas, such as organic field-effect transistors and organic solar cells. [1] The organic semicondutor group of materials known as metal phthalocyanines (MPc’s) is interesting for applications such as large area solar cells due to their optoelectronic properties coupled with the possibility of easily and cheaply fabricating thin films of MPc’s. [1, 2]
Many of the properties of organic semiconductors, such as magnetism, light absorption and charge transport, show orientational anisotropy. [2, 3] To maximise the efficiency of a device based on these materials it is therefore important to study the molecular orientation in films and to assess the influence of different growth conditions and substrate treatments. X-ray diffraction is a well established and powerful technique for studying texture (and hence molecular orientation)_in crystalline materials, but cannot provide any information about amorphous or nanocrystalline films. In this paper we present a continuous wave X-band EPR study using the anisotropy of the CuPc EPR spectrum [4] to determine the orientation effects in different types of CuPc films. From these measurements we also gain insight into the molecular arrangement of films of CuPc mixed with the isomorphous H2Pc and with C60 in films typical of real solar cell systems.