993 resultados para Finite-Temperature
Resumo:
This study addresses to the optimization of pultrusion manufacturing process from the energy-consumption point of view. The die heating system of external platen heaters commonly used in the pultrusion machines is one of the components that contribute the most to the high consumption of energy of pultrusion process. Hence, instead of the conventional multi-planar heaters, a new internal die heating system that leads to minor heat losses is proposed. The effect of the number and relative position of the embedded heaters along the die is also analysed towards the setting up of the optimum arrangement that minimizes both the energy rate and consumption. Simulation and optimization processes were greatly supported by Finite Element Analysis (FEA) and calibrated with basis on the temperature profile computed through thermography imaging techniques. The main outputs of this study allow to conclude that the use of embedded cylindrical resistances instead of external planar heaters leads to drastic reductions of both the power consumption and the warm-up periods of the die heating system. For the analysed die tool and process, savings on energy consumption up to 60% and warm-up period stages less than an half hour were attained with the new internal heating system. The improvements achieved allow reducing the power requirements on pultrusion process, and thus minimize industrial costs and contribute to a more sustainable pultrusion manufacturing industry.
Resumo:
Pultrusion is an industrial process used to produce glass fibers reinforced polymers profiles. These materials are worldwide used when performing characteristics, such as great electrical and magnetic insulation, high strength to weight ratio, corrosion and weather resistance, long service life and minimal maintenance are required. In this study, we present the results of the modelling and simulation of heat flow through a pultrusion die by means of Finite Element Analysis (FEA). The numerical simulation was calibrated based on temperature profiles computed from thermographic measurements carried out during pultrusion manufacturing process. Obtained results have shown a maximum deviation of 7%, which is considered to be acceptable for this type of analysis, and is below to the 10% value, previously specified as maximum deviation. © 2011, Advanced Engineering Solutions.
Resumo:
The global warming due to high CO2 emission in the last years has made energy saving a global problem nowadays. However, manufacturing processes such as pultrusion necessarily needs heat for curing the resin. Then, the only option available is to apply all efforts to make the process even more efficient. Different heating systems have been used on pultrusion, however, the most widely used are the planar resistances. The main objective of this study is to develop another heating system and compares it with the former one. Thermography was used in spite of define the temperature profile along the die. FEA (finite element analysis) allows to understand how many energy is spend with the initial heating system. After this first approach, changes were done on the die in order to test the new heating system and to check possible quality problems on the product. Thus, this work allows to conclude that with the new heating system a significant reduction in the setup time is now possible and an energy reduction of about 57% was achieved.
Resumo:
This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimize heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed with basis on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.
Resumo:
Journal of Algebra, 321 (2009), p. 743–757
Resumo:
An experimental and numerical investigation into the shear strength behaviour of adhesive single lap joints (SLJs) was carried out in order to understand the effect of temperature on the joint strength. The adherend material used for the experimental tests was an aluminium alloy in the form of thin sheets, and the adhesive used was a high-strength high temperature epoxy. Tensile tests as a function of temperature were performed and numerical predictions based on the use of a bilinear cohesive damage model were obtained. It is shown that at temperatures below Tg, the lap shear strength of SLJs increased, while at temperatures above Tg, a drastic drop in the lap shear strength was observed. Comparison between the experimental and numerical maximum loads representing the strength of the joints shows a reasonably good agreement.
Low temperature structural transitions in dipolar hard spheres: the influence on magnetic properties
Resumo:
We investigate the structural chain-to-ring transition at low temperature in a gas of dipolar hard spheres (DRS). Due to the weakening of entropic contribution, ring formation becomes noticeable when the effective dipole-dipole magnetic interaction increases, It results in the redistribution of particles from usually observed flexible chains into flexible rings. The concentration (rho) of DI-IS plays a crucial part in this transition: at a very low rho only chains and rings are observed, whereas even a slight increase of the volume fraction leads to the formation of branched or defect structures. As a result, the fraction of DHS aggregated in defect-free rings turns out to be a non-monotonic function of rho. The average ring size is found to be a slower increasing function of rho when compared Lo that of chains. Both theory and computer simulations confirm the dramatic influence of the ring formation on the rho-dependence of the initial magnetic susceptibility (chi) when the temperature decreases. The rings clue to their zero total dipole moment are irresponsive to a weak magnetic field and drive to the strong decrease of the initial magnetic susceptibility. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
With the help of a unique combination of density functional theory and computer simulations, we discover two possible scenarios, depending on concentration, for the hierarchical self-assembly of magnetic nanoparticles on cooling. We show that typically considered low temperature clusters, i.e. defect-free chains and rings, merge into more complex branched structures through only three types of defects: four-way X junctions, three-way Y junctions and two-way Z junctions. Our accurate calculations reveal the predominance of weakly magnetically responsive rings cross-linked by X defects at the lowest temperatures. We thus provide a strategy to fine-tune magnetic and thermodynamic responses of magnetic nanocolloids to be used in medical and microfluidics applications.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
In this paper we give presentations for the monoid DPn of all partial isometries on {1,..., n} and for its submonoid ODPn of all order-preserving partial isometries.
Resumo:
Glasgow Mathematical Journal, nº 47 (2005), pg. 413-424
Resumo:
In these experiments the ratio of male to female S. mansoni larvae in D. glabrata from Belo Horizonte and Ribeirão das Neves Minas Gerais, Brazil, either reared in laboratoty or collected in the field, varied from 1:1 to 1:1.3 or 1.4:1. Cercariae of LE strain of Schistosoma mansoni, shed by 39 snails maintained at 25±0.5ºC were used to infect mice on a weekly basis. Subsequent perfusion resulted in 76.6% male and 23.4% female worms. The cercariac produced by 32 infected snails maintained at 27+0.5°C were inoculated into mice and produced 43.4% male and 56.6% female worms (p<0.05). Cercariae eliminated by snails collected in Barreiro and Ressaca, Belo Horizonte, during hot months, produced 45.7 to 47.7% male and 52.3 to 54.3% female worms. A lower number of cercariae shed by snails collected in Gorduras, Belo Horizonte, at 20+3.0°C, produced 51.6% male and 48.4% female worms. Thus, in this region the infection of vertebrate hosts with S. mansoni cercariae would be more severe in the summer due to the higher level of parasites and the number of eggs.
Resumo:
Communications in Algebra, 33 (2005), p. 587-604
Resumo:
Bulletin of the Malaysian Mathematical Sciences Society, 2, 34 (1),(2011), p. 79–85
Resumo:
Third stage larvae (L3) from Angiostrongylus costaricensis were incubated in water at room temperature and at 5 ° C and their mobility was assessed daily for 17 days. Viability was associated with the mobility and position of the L3, and it was confirmed by inoculation per os in albino mice. The number of actively moving L3 sharply decreased within 3 to 4 days, but there were some infective L3 at end of observation. A mathematical model estimated 80 days as the time required to reduce the probability of infective larvae to zero. This data does not support the proposition of refrigerating vegetables and raw food as an isolated procedure for prophylaxis of human abdominal angiostrongylosis infection.