986 resultados para Field capacity
Resumo:
The Schwinger proper-time method is an effective calculation method, explicitly gauge-invariant and nonperturbative. We make use of this method to investigate the radiatively induced Lorentz- and CPT-violating effects in quantum electrodynamics when an axial-vector interaction term is introduced in the fermionic sector. The induced Lorentz- and CPT-violating Chern-Simons term coincides with the one obtained using a covariant derivative expansion but differs from the result usually obtained in other regularization schemes. A possible ambiguity in the approach is also discussed. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Relatório Final de Estágio apresentado à Escola Superior de Dança com vista à obtenção do grau de Mestre em Ensino de Dança.
Resumo:
The hand is one of the most important instruments of the human body, mainly due to the possibility of grip movements. Grip strength has been described as an important predictor of functional capacity. There are several factors that may influence it, such as gender, age and anthropometric characteristics. Functional capacity refers to the ability to perform daily activities which allow the individual to self-care and to live with autonomy. Composite Physical Function (CPF) scale is an evaluation tool for functional capacity that includes daily activities, self-care, sports activities, upper limb function and gait capacity. In 2011, Portugal had 15% of young population (0-14years) and 19% of elderly population (over 65 years). Considering the double-ageing phenomen, it is important to understand the effect of the grip strength in elderly individuals, considering their characteristics, as the need to maintainin dependency as long as possible.
Resumo:
Reactive oxygen species (ROS) are produced as a consequence of normal aerobic metabolism and are able to induce DNA oxidative damage. At the cellular level, the evaluation of the protective effect of antioxidants can be achieved by examining the integrity of the DNA nucleobases using electrochemical techniques. Herein, the use of an adenine-rich oligonucleotide (dA21) adsorbed on carbon paste electrodes for the assessment of the antioxidant capacity is proposed. The method was based on the partial damage of a DNA layer adsorbed on the electrode surface by OH• radicals generated by Fenton reaction and the subsequent electrochemical oxidation of the intact adenine bases to generate an oxidation product that was able to catalyze the oxidation of NADH. The presence of antioxidant compounds scavenged hydroxyl radicals leaving more adenines unoxidized, and thus, increasing the electrocatalytic current of NADHmeasured by differential pulse voltammetry (DPV). Using ascorbic acid (AA) as a model antioxidant species, the detection of as low as 50nMof AA in aqueous solution was possible. The protection efficiency was evaluated for several antioxidant compounds. The biosensor was applied to the determination of the total antioxidant capacity (TAC) in beverages.
Resumo:
In this paper, a biosensor based on a glassy carbon electrode (GCE) was used for the evaluation of the total antioxidant capacity (TAC) of flavours and flavoured waters. This biosensor was constructed by immobilising purine bases, guanine and adenine, on a GCE. Square wave voltammetry (SWV) was selected for the development of this methodology. Damage caused by the reactive oxygen species (ROS), superoxide radical (O2·−), generated by the xanthine/xanthine oxidase (XOD) system on the DNA-biosensor was evaluated. DNA-biosensor encountered with oxidative lesion when it was in contact with the O2·−. There was less oxidative damage when reactive antioxidants were added. The antioxidants used in this work were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants are capable of scavenging the superoxide radical and therefore protect the purine bases immobilized on the GCE surface. The results demonstrated that the DNA-based biosensor is suitable for the rapid assess of TAC in beverages.
Resumo:
The antioxidant profiles of 39 water samples (29 flavored waters based on 10 natural waters) and 6 flavors used in their formulation (furnished by producers) were determined. Total phenol and flavonoid contents, reducing power, and DPPH radical scavenging activity were the optical techniques implemented and included in the referred profile. Flavor extracts were analyzed by HS-SPME/GC-MS to obtain the qualitative and quantitative profiles of the volatile fraction of essential oils. Results pointed out a higher reducing power (0.14 11.8 mg of gallic acid/L) and radical scavenging activity (0.29 211.5 mg Trolox/L) of flavored waters compared with the corresponding natural ones, an interesting fact concerning human health. Bioactive compounds, such as polyphenols, were present in all samples (0.5 359 mg of gallic acid/L), whereas flavonoids were not present either in flavored waters or in flavors. The major components of flavor extracts were monoterpenes, such as citral, R-limonene, carveol, and R-terpineol.
Resumo:
The integrity of DNA purine bases was herein used to evaluate the antioxidant capacity. Unlike other DNA-based antioxidant sensors reported so far, the damaging agent chosen was the O 2 radical enzymatically generated by the xanthine/xanthine oxidase system. An adenine-rich oligonucleotide was adsorbed on carbon paste electrodes and subjected to radical damage in the presence/absence of several antioxidant compounds. As a result, partial damage on DNA was observed. A minor product of the radical oxidation was identified by cyclic voltammetry as a diimine adenine derivative also formed during the electrochemical oxidation of adenine/guanine bases. The protective efficiency of several antioxidant compounds was evaluated after electrochemical oxidation of the remaining unoxidized adenine bases, by measuring the electrocatalytic current of NADH mediated by the adsorbed catalyst species generated. A comparison between O 2 and OH radicals as a source of DNA lesions and the scavenging efficiency of various antioxidant compounds against both of them is discussed. Finally, the antioxidant capacity of beverages was evaluated and compared with the results obtained with an optical method.
Resumo:
In this study, a method for the electrochemical quantification of the total antioxidant capacity (TAC) in beverages was developed. The method is based on the oxidative damage to the purine bases, adenine or guanine, that are immobilized on a glassy carbon electrode (GCE) surface. The oxidative lesions on the DNA bases were promoted by the sulfate radical generated by the persulfate/iron(II) system. The presence of antioxidants on the reactive system promoted the protection of the DNA bases immobilized on the GCE by scavenging the sulfate radical. Square-wave voltammetry (SWV) was the electrochemical technique used to perform this study. The efficiencies of five antioxidants (ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol) in scavenging the sulfate radical and, therefore, their ability to protect the purine bases immobilized on the GCE were investigated. These results demonstrated that the purine-based biosensor is suitable for the rapid assessment of the TAC in flavors and flavored water.
Resumo:
To counteract and prevent the deleterious effect of free radicals the living organisms have developed complex endogenous and exogenous antioxidant systems. Several analytical methodologies have been proposed in order to quantify antioxidants in food, beverages and biological fluids. This paper revises the electroanalytical approaches developed for the assessment of the total or individual antioxidant capacity. Four electrochemical sensing approaches have been identified, based on the direct electrochemical detection of antioxidant at bare or chemically modified electrodes, and using enzymatic and DNA-based biosensors.
Resumo:
The purpose of the present work is to determine the antioxidant capacity (AC) of 27 commercial beers. The AC indicates the degree of protection of a certain organism against oxidative damage provoked by reactive oxygen and nitrogen species. Assays were carried out by the following methods: (i) total radical trapping antioxidant parameter (TRAP); (ii) trolox equivalent antioxidant capacity (TEAC); (iii) trolox equivalent antioxidant capacity (DPPH); (iv) ferric-ion reducing antioxidant parameter (FRAP); (v) cupric reducing antioxidant capacity (CUPRAC); (vi) oxygen radical absorbance capacity (ORAC). Ascorbic acid (AA), gallic acid (GA) and trolox (TR) were used as standards. All beers showed antioxidant power, but a wide range of ACs was observed. The effect of several factors upon these differences was studied. Statistical differences were found between ACs of beers of different colours. ORAC method provided always higher experimental ACs, of significant statistical differences to other assays.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Área de especialização: Terapia com Radiações
Resumo:
The interest in zero-valent iron nanoparticles has been increasing significantly since the development of a green production method in which extracts from natural products or wastes are used. However, this field of application is yet poorly studied and lacks knowledge that allows the full understanding of the production and application processes. The aim of the present work was to evaluate the viability of the utilization of several tree leaves to produce extracts which are capable of reducing iron(III) in aqueous solution to form nZVIs. The quality of the extracts was evaluated concerning their antioxidant capacity. The results show that: i) dried leaves produce extracts with higher antioxidant capacities than non-dried leaves, ii) the most favorable extraction conditions (temperature, contact time, and volume:mass ratio) were identified for each leaf, iii) with the aim of developing a green, but also low-cost,method waterwas chosen as solvent, iv) the extracts can be classified in three categories according to their antioxidant capacity (expressed as Fe(II) concentration): >40 mmol L−1; 20–40 mmol L−1; and 2–10 mmol L−1; with oak, pomegranate and green tea leaves producing the richest extracts, and v) TEManalysis proves that nZVIs (d=10–20 nm) can be produced using the tree leaf extracts.
Resumo:
A dynamic scheduler that supports the coexistence of guaranteed and non-guaranteed bandwidth servers is proposed. Overloads are handled by an efficient reclaiming of residual capacities originated by early completions as well as by allowing reserved capacity stealing of non-guaranteed bandwidth servers. The proposed dynamic budget accounting mechanism ensures that at a particular time the currently executing server is using a residual capacity, its own capacity or is stealing some reserved capacity, eliminating the need of additional server states or unbounded queues. The server to which the budget accounting is going to be performed is dynamically determined at the time instant when a capacity is needed. This paper describes and evaluates the proposed scheduling algorithm, showing that it can efficiently reduce the mean tardiness of periodic jobs. The achieved results become even more significant when tasks’ computation times have a large variance.
Resumo:
Hydroxycinnamic acids (such as ferulic, caffeic, sinapic, and p-coumaric acids) are a group of compounds highly abundant in food that may account for about one-third of the phenolic compounds in our diet. Hydroxycinnamic acids have gained an increasing interest in health because they are known to be potent antioxidants. These compounds have been described as chain-breaking antioxidants acting through radical scavenging activity, that is related to their hydrogen or electron donating capacity and to the ability to delocalize/stabilize the resulting phenoxyl radical within their structure.The free radical scavenger ability of antioxidants can be predicted from standard one-electron potentials. Thus, voltammetric methods have often been applied to characterize a diversity of natural and synthetic antioxidants essentially to get an insight into their mechanism and also as an important tool for the rational design of new and potent antioxidants.The structure-property-activity relationships (SPARs) correlations already established for this type of compounds suggest that redox potentials could be considered a good measure of antioxidant activity and an accurate guideline on the drug discovery and development process. Due to its magnitude in the antioxidant field, the electrochemistry of hydroxycinnamic acid-based antioxidants is reviewed highlighting the structure-property-activity relationships (SPARs) obtained so far.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações