900 resultados para Ferrocene-tagged peptide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peptidic nature of anti-IAPs N-terminus Smac-derived peptides precludes their utilization as potential therapeutic anticancer agents. Recent advances in the development of novel Smac-derived peptidomimetics and non-peptidic molecules with improved anti-IAPs activity and resistance to proteolytic cleavage have been reported and led to a number of candidates that are currently in clinical trials including LCL-161, SM-406/AT-406, GDC-0512/GDC-0917, and birinapant. As an attempt to improve the proteolytic stability of Smac peptides, we developed the Aza-peptide AzaAla-Val-Pro-Phe-Tyr-NH2 (2). Unlike unmodified peptide Ala-Val-Pro-Phe-Tyr-NH2 (1), analogue (2) exhibited resistance towards proteolytic cleavage by two aminopeptidases; LAP and DPP-IV, while retaining its IAP inhibitory activity. This was due to the altered planar geometry of the P1 residue side chain. Our findings showed that using aza-isosteres of bioactive peptide sequences imbue the residue with imperviousness to proteolysis; underscoring a potential approach for developing a new generation of Smac-derived Aza-peptidomimetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug-resistant pathogens. Biofilm-forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra-peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram-positive medical device-related pathogens. 3-(4-Hydroxyphenyl)propionic)-Orn-Orn-Trp-Trp-NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24-h biofilms at MBEC with 6-h exposure. Reduced cell cytotoxicity, relative to Gram-positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes).

Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost-effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian skin, and particularly that of south/Central American phyllomedusine frogs, is supposed to be "a huge factory and store house of a variety of active peptides". The 40 amino acid amphibian CRF-like peptide, sauvagine, is a prototype member of a unique family of these Phyllomedusa skin peptides. In this study, we describe for the first time the structure of a mature novel peptide from the skin secretion of the South American orange-legged leaf frog, Phyllomedusa hypochondrialis, which belongs to the amphibian CRF/sauvagine family. Partial amino acid sequence from the N-terminal was obtained by automated Edman degradation with the following structure: pGlu-GPPISIDLNMELLRNMIEI-. The biosynthetic precursor of this novel sauvagine peptide, consisted of 85 amino acid residues and was deduced from cDNA library constructed from the same skin secretion. Compared with the standard sauvagine from the frog, Phyllomedusa sauvagei, this novel peptide was found to exert similar contraction effects on isolated guinea-pig colon and rat urinary bladder smooth muscle preparations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of ‘The Three Rs’ (The 3Rs: reduction, refinement and replacement) is an important consideration in the development of alternatives to animal testing in medical research. Invertebrate models such as Galleria mellonella are advantageous both economically and ethically.1 Galleria have proven to be effective alternatives to assess the antimicrobial activity of novel therapeutics.2
In this study Galleria mellonella are validated and used as an in vivo infection model to determine the antimicrobial activity of a novel self-assembling antimicrobial peptide NapFFKK.3 The peptide was considered as being non-toxic to the Galleria with 100% survival 120 hours post inoculation with NapFFKK. Following inoculation with Pseudomonas aeruginosa PAO1, Escherichia coli ATCC 11303, Staphylococcus epidermidis ATCC 35984 and Staphylococcus aureus ATCC 6538, the highest concentration allowing survival was selected and used as the test inoculum. Haemolymph was extracted from inoculated and peptide treated Galleria at either 24 or 72 hours post-treatment. Reduction in bacterial load was determined in comparison to a positive control. Bacterial load was decreased in all treated Galleria with decreasing antimicrobial activity demonstrated with a decreased concentration of peptide (2- log cycle reduction achieved in Escherichia coli inoculated Galleria treated with 2% NapFFKK). The results are promising regarding the use of Galleria mellonella as an infection model and NapFFKK as an effective novel antimicrobial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the efforts to find an anti-viral treatment for dengue, a simple tryptophan fluorescence-screening assay aimed at identifying dengue domain III envelope (EIII) protein inhibitors was developed. Residue Trp391 of EIII was used as an intrinsic probe to monitor the change in fluorescence of the tryptophan residue upon binding to a peptide. The analysis was based on the electron excitation at 280 nm and fluorescence emission at 300–400 nm of EIII, followed by quenching of fluorescence in the presence of potential peptidic inhibitors coded DS36wt, DS36opt, DN58wt and DN58opt. The present study found that the fluorescence of the recombinant EIII was quenched following the binding of DS36opt, DN58wt and DN58opt ina concentration-dependent manner. Since the λmax for emission remained unchanged, the effect was not dueto a change in the environment of the tryptophan side chain. In contrast, a minimal fluorescence-quenching effect of DS36wt at 20 and 40 µM suggested that the DS36wt does not have any binding ability to EIII. This was supported by a simple native-page gel retardation assay that showed a band shift of EIII domain whenincubated with DS36opt, DN58wt and DN58opt but not with DS36wt. We thus developed a low-cost and convenientspectrophotometric binding assay for the analysis of EIII–peptide interactions in a drug screening application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of novel Mycobacterium avium subsp. paratuberculosis (MAP)-specific monoclonal antibodies and phage-display derived peptide binders, along with their application for the magnetic separation (MS) of MAP cells, is described. Our aim was to achieve even greater MAP capture capability than is possible with peptide-mediated magnetic separation (PMS) using a 50:50 mix of biotinylated-aMp3 and biotinylated-aMptD peptide-coated beads. Gamma-irradiated whole MAP cells and ethanol extracted antigens (EEA) from these cells were used to elicit an immune response and as phage-display biopanning targets. A range of novel binders was obtained and coated onto paramagnetic beads, both individually and in various combinations, for MS evaluation. IS900 PCR was employed after MS to provide quick results. Capture sensitivity was assessed using a range of MAP concentrations after which the most promising beads were tested for their specificity for MAP, by performing MS followed by culture using 10 other Mycobacterium species. Magnetic beads coated with the biotinylated EEA402 peptide demonstrated a greater level of MAP capture than the current PMS method, even when low numbers of MAP (<10 cfu/ml) were present; however these beads also captured a range of other mycobacteria and so lacked capture specificity. Magnetic beads coated with monoclonal antibodies 6G11 and 15D10 (used as a 50:50 mix or as dually coated beads) also demonstrated improved MAP capture relative to the current PMS method, but with little cross-reactivity to other Mycobacterium spp. Therefore, two new MS protocols are suggested, the application of which would be dependent upon the required endpoint. Biotinylated EEA402-coated beads could potentially be used with a MAP-specific PCR to ensure detection specificity, while beads coated with 6G11 and 15D10 monoclonal antibodies could be used with culture or the phage amplification assay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Fibroblasts play a significant role as regulators of the host response in periodontal disease, responding to bacterial stimulation by producing an array of inflammatory cytokines and chemokines. LL-37, a host defence peptide, inhibits LPS-induced cytokine signalling in macrophages, suggesting an immunomodulatory role. The objective was to investigate the interaction between LL-37 and gingival fibroblasts – both its direct regulation of fibroblast activity and its effect on fibroblast response to LPS activation. Methods: Human gingival fibroblasts (HGFs) were incubated for 24 hours in the presence of either P. gingivalis LPS (10µg/ml) or E. coli LPS (10ng/ml) along with LL-37 (0-50 µg/ml). IL-6 and IL-8 production by HGFs in the conditioned medium was determined by ELISA. Western blot was performed to determine the effect of LL-37 on LPS -induced IκBα degradation in HGFs following LPS stimulation over 2 hours. DNA microarray analysis was performed on cell populations incubated for 6 hr in the presence or absence of the peptide. Confirmation of LL-37 effects on specific gene expression was obtained by QPCR. Results: At low concentrations (≤ 5 µg/ml) LL-37 significantly inhibited LPS-induced cytokine production by HGFs. At higher concentrations LL-37 induced IL-8 production independent of LPS. Addition of LL-37 blocked LPS-induced IκBα degradation in HGFs. Microarray analysis revealed that LL-37 (50µg/ml) upregulated a significant number of cytokines and chemokines by > 5 fold. Upregulation of five of these, CXCL1, CXCL2, CXCL3, IL-24 and IL-8 was confirmed by Q-PCR. Conclusion: The host defence peptide LL-37, the only known human cathelicidin, appears to have pleiotrophic effects in innate immunity. At least some of these are mediated through cytokine and chemokine signalling networks. The ability of LL-37 to reduce bacterial LPS-induced cytokine production in gingival fibroblasts, at low concentrations, suggests a potential therapeutic role in the management of periodontal disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peptides derived from envelope proteins have been shown to inhibit the protein-protein interactions in the virus membrane fusion process and thus have a great potential to be developed into effective antiviral therapies. There are three types of envelope proteins each exhibiting distinct structure folds. Although the exact fusion mechanism remains elusive, it was suggested that the three classes of viral fusion proteins share a similar mechanism of membrane fusion. The common mechanism of action makes it possible to correlate the properties of self-derived peptide inhibitors with their activities. Here we developed a support vector machine model using sequence-based statistical scores of self-derived peptide inhibitors as input features to correlate with their activities. The model displayed 92% prediction accuracy with the Matthew’s correlation coefficient of 0.84, obviously superior to those using physicochemical properties and amino acid decomposition as input. The predictive support vector machine model for self- derived peptides of envelope proteins would be useful in development of antiviral peptide inhibitors targeting the virus fusion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.