870 resultados para Ferrite of yttrium
Resumo:
The study was inspired by information on Paleozoic andesites, dacites, and diabases on the Belkovsky Island in the 1974 geological survey reports used to reconstruct tectonic evolution of the continental block comprising the New Siberian Islands and the bordering shelf. We did not find felsic volcanics or Middle Paleozoic intrusions in the studied area of the island. Igneous rocks are mafic subvolcanic intrusions including dikes, randomly shaped bodies, explosion breccias, and peperites. They belong to the tholeiitic series and are similar to Siberian traps in petrography and trace-element compositions, with high LREE and LILE and prominent Nb negative anomalies. The island arc affinity is due to continental crust contamination of mantle magma and its long evolution in chambers at different depths. K-Ar biotite age (252+/-5 Ma) of magmatism indicates that it was coeval to the main stage of trap magmatism in the Siberian craton at the Permian-Triassic boundary. The terrane including the New Siberian Islands occurred on the periphery of the Siberian trap province where magmatism acted in rifting environment. Magma intruded into semiliquid wet sediments at shallow depths shortly after their deposition. Therefore, the exposed Paleozoic section in Belkovsky Island may include Permian or possibly Lower Triassic sediments of younger ages than it was believed earlier.
Resumo:
New results on the petrochemistry and geochemistry of dolerites from the Schirmacher Oasis shed light on the development of the Karoo-Maud plume in Antarctica. The basalts and dolerites are petrologically identical to the rocks of western Dronning Maud Land (DML), which were previously studied and interpreted as a manifestation of the Karoo-Maud plume in Antarctica. The spatial distribution of the dikes suggests eastward spreading of the plume material, up to the Schirmacher Oasis for at least 10 Ma. The geochemical characteristics of magmas from the Schirmacher Oasis reflect the influence of crustal contamination, which accompanied both the ascent and spreading of the plume. The magmas of the initial stage of plume activity (western DML) appeared to be the most contaminated in crustal components. It was found that the geochemical characteristics of Mesozoic magmas from the Schirmacher Oasis are identical to those of enriched tholeiites from the Afanasy Nikitin Rise and the central Kerguelen Plateau (Hole 749), which indicates that their enrichment was related to the ancient material of the Gondwana continent. This was caused by the opening of the Indian Ocean under the influence of the Karoo-Maud plume. This process was peculiar in that it occurred in the presence of nonspreading blocks of varying thickness, for instance, Elan Bank in the central Kerguelen Plateau, and was accompanied by the formation of intraplate volcanic rises, which are documented in the seafloor relief of basins around Antarctica. The geochemical characteristics of igneous rocks from the resulting rises (Afanasy Nikitin, Kerguelen, Naturaliste, and Ninetyeast Ridge) indicate the influence of processes related to crustal assimilation. The magmatism that occurred 40 Ma after the main phase of the Karoo-Maud volcanism at the margins of the adjacent continents of Australia (Bunbury basalts) and India (Rajmahal trapps) could be generated by the Karoo-Maud plume flowing along the developing spreading zone. The plume moved subsequently and was localized at the Kerguelen Plateau, where it occurs at present as an active hotspot.
Resumo:
New magnetometric, petrological, and geochemical data on basalts from the central Romanche Fracture Zone allow to classify these rocks into two groups. Igneous rocks from the active part of the fracture zone that have undergone transtension are referred to alkaline rocks. According to some indications, they are younger that oceanic tholeiites of the southern fault-line ridge, which were affected by elevated pressure in the past. These data indicate with a high probability that the Romanche Fracture Zone belongs to a rare group of magmatically active demarcation transform lines that separate large oceanic domains different in structural and geochemical features.
Resumo:
During underwater photography and sampling of the rift valley bottom in the axial part of the East Pacific Rise, where water transparency is reduced due to hydrothermal input, ore manifestations have been found. The bottom is covered by them as by a jacket on both sides from the EPR axial zone. However, exposed pillow-lavas and clumpy blocks in rift ledges are covered by a thin metal-bearing film. It is supposed that sedimentation results mainly from hydrothermal input of dissolved chemical elements in seawater, their transformation on the geochemical barrier, and subsequent deposition as particulates. Contents of ore components in metalliferous sediments have been measured by atomic-absorption and X-ray radiometry methods. Sediment age has been determined as Middle Pleistocene - Holocene. Maximal hydrothermal activity was at the beginning of Early Holocene, about 10 Ka. A smoker has been found on the western slope of the rift valley.
Resumo:
Lithology, heavy mineral associations, and chemical composition of bottom sediments studied in two gravity cores from Isfjord, Western Spitsbergen (Svalbard) accompanied by high-frequency seismic records, provide a new insight on provenance and glaciomarine sedimentation in the fjord from the last deglaciation through Holocene.
Resumo:
The monograph has been written on the base of data obtained from samples and materials collected during the 19-th cruise of RV ''Akademik Vernadsky'' to the Northern and Equatorial Indian Ocean. Geological features of the region (stratigraphy, tectonic structure, lithology, distribution of ore-forming components in bottom sediments, petrography of igneous rocks, etc.) are under consideration. Regularities of trace element concentration in Fe-Mn nodules, nodule distribution in bottom sediments, and engineering-geological properties of sediments within the nodule fields have been studied. Much attention is paid to ocean crust rocks. The wide range of ore mineralization (magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals) has been ascertained.
Resumo:
This paper is dedicated to the geochemical studies of two bottom sediment cores that were taken during cruise 28 of the R/V Professor Logachev in the Mid-Atlantic Ridge (MAR) 16°38'N area in 2006. The chemical compositions of background metalliferous and ore (ore-bearing) carbonate sediments are presented and inter-element correlations are examined. Individual episodes are distinguished in the accumulation history of the ore-bearing and metalliferous sediments on the basis of element factor analysis.
Resumo:
Pioneer information about chemical composition of river waters in the Wrangel Island has been obtained. It is shown that water composition reflects the lithogeochemical specifics of primary rocks and ore mineralization. In contrast to many areas of the Russian Far North river waters of the island are characterized by elevated background value of total mineralization (i.e., total dissolved solids, TDS) (0.3-2 g/l) and specific chemical type (SO4-Ca-Mg). This is related to abundance of Late Carboniferous gypsiferous and dolomitic sequences in the mountainous area of the island. It has also been established that salt composition of some streams is appreciably governed by supergene alterations of sulfide mineralization associated with quartz-carbonate vein systems. They make up natural centers of surface water contamination. Waters in such streams are characterized by low pH values (2.4-5.5), high TDS (up to 6-23 g/l) and SO4-Mg composition. These waters are also marked by anomalously high concentrations of heavy and non-ferrous metals, as well as REE, U, and Th.
Resumo:
Major element chemistry of basalt from the southern East Pacific Rise (EPR) is different from that of the EPR at the time of the formation of the Pacific Plate at 170 Ma.Glass recovered from Jurassic age (170 Ma) Pacific ocean crust (Bartolini and Larson, 2001, doi:10.1130/0091-7613(2001)029<0735:PMATPS>2.0.CO;2) at Ocean Drilling Program Hole 801C records higher Fe8 (10.77 wt%) and marginally lower Na8 (2.21 wt%) compared to the modern EPR, suggesting deeper melting and a temperature of initial melting that was 60°C hotter than today.Trace element ratios such as La/Sm and Zr/Y, on the other hand, show remarkable similarities to the modern southern EPR, indicating that Site 801 was not generated on a hotspot-influenced ridge and that mantle composition has changed little in the Pacific over the past 170 Ma. Our results are consistent with the observation that mid-ocean ridge basalts (MORBs) older than 80 Ma were derived by higher temperature melting than are modern MORBs (Humler et al., 1999, doi:10.1016/S0012-821X(99)00218-6), which may have been a consequence of the Cretaceous superplume event in the Pacific.Site 801 predates the formation of Pacific oceanic plateaus and 801C basalt chemistry indicates that higher temperatures of mantle melting beneath Pacific ridges preceded the initiation of the superplume.
Resumo:
Volcanic basement recovered at Hole 765D is characterized by nonpervasive, oxidative alteration, typical of seafloor weathering. Chilled margins and the mesostasis of the lavas are variably altered to assemblages of celadonite, Fe-oxyhydroxides, zeolites, and calcite with trace saponite. Plagioclase is partially altered to Ca-Na zeolites and/or albite. Well-developed alteration halos parallel fracture surfaces and extend several centimeters into the surrounding rock. These clay-rich halos are enriched in K2O and Fe2O3 relative to the adjacent clay-poor rock. The halos and adjacent rock are characterized by d18O values 2 per mil-3 per mil higher than those of fresh MORB. The "freshness" of the samples and the scarcity of saponite suggest that the duration of seawater circulation was short-lived. Albitization of plagioclase indicates that the volcanic rocks were altered initially at low temperatures and were subsequently reheated off-axis in a closed environment. Reheating did not result in significant modification of the bulk composition of the crust.
Resumo:
Santorin, am südlichsten Punkt des Kykladenbogens gelegen, ist der einzige noch tätige Vulkan in der südlichen Ägäis. Der Vulkanismus begann vor ca. 1.6 Mio. Jahren. Santorin besteht aus 5 Inseln, die nahezu vollständig aus vulkanischen Gesteinen aufgebaut sind, die im Laufe der Vulkangeschichte aus verschiedenen Eruptionszentren gefördert wurden. Abgesehen von den Laven im N der Hauptinsel Thera, wird der Zentral- und Südteil der Insel in der Hauptsache von den pyroklastischen Förderprodukten des sog. Thera-Vulkans aufgebaut. In der vorliegenden Arbeit waren diese pyroklastischen Serien Ziel der Untersuchungen. Die Ergebnisse daraus können folgendermaßen zusammengefaßt werden: - Die Aufnahme von 14 detaillierten Profilen und deren Korrelierung erbrachte die Einteilung der pyroklastischen Schichten in 5 Haupt-Folgen: T5/1 - Untere Bimsstein-Folge (Bu), T5/2-Mittlere Bimsstein-Folge (Bm), - T5/3, Die Obere Bimsstein-Folge (Bo) wurde dabei nicht weiter berücksichtigt, da sie bereits in zahlreichen Arbeiten untersucht worden ist. - Die als T5/1-3 bezeichneten Serien bestehen aus Aschen, Schlacken, wenigen Bimsstein-Horizonten und untergeordnet Ignimbriten, 'pyroclastic' und 'ash flow'-Ablagerungen, sowie Laharen. Umlagerungen und Bodenhorizonte zeigen die Unterbrechung in der vulkanischen Tätigkeit an. - In den Tg-Folgen konnten jeweils einer oder mehrere Leit-Horizonte gefunden werden, die es ermöglichen die drei Tg-Serien zu unterscheiden und zu korrelieren. - Die Untere Bimsstein-Folge (Bu) wurde in sechs Einheiten unterteilt, die eine Wechselfolge von 'pumice fall' und 'pumice flow'-Ablagerungen bilden. - Mineralogische Untersuchungen zeigen für die 5 Haupt-Folgen nur geringe Unterschiede. Die Bimssteine und Schlacken bestehen überwiegend aus Glas und haben nur wenige Phänokristalle (3-12 Vol.*), wobei der Plagioklas (Andesin-Labradorit) überwiegt; Orthopyroxen (Hypersthen) und Klinopyroxen (diops. Augit) stellen ca. 30% der Einsprengunge. An Akzessorien sind vorhanden: Apatit, Magnetit, Hämatit und sehr selten Hornblende. - Ein Versuch zur Unterscheidung der Gesteine in den einzelnen Schicht-Einheiten war die Bestimmung der Lichtbrechung und der Dichte. Es zeigte sich, daß die Dichte weniger geeignet ist, die Lichtbrechung aber eine schwache Differenzierung widerspiegelt und somit für die Bimssteine und Schlacken, aber auch für die Bimssteine innerhalb des Bu unterschiedliche Werte gefunden wurden - Aus den Korngrößen-Analysen des Asche-Leithorizontes der T5/3-Folge ergaben sich die Lage des Eruptionszentrums und die damals vorherrschende Windrichtung. - Die Oberen Ignimbrite (Ign., im Hangenden der T5/3-Folge) konnten erstmals in 5 Einheiten unterteilt werden. - Die Seltenen Erden-Analysen erbrachten für die einzelnen Folgen in etwa die gleichen SEE-Spektren. - Die geochemischen Untersuchungen von ca. 120 Proben sind in verschiedenen Diagrammen dargestellt. Daraus wird deutlich, daß die T5-Folgen die basischsten Glieder sind. Es handelt sich überwiegend um Quarz-Andesite und Quarz-Latiandesite, während die Bimsstein-Serien (Bu u. Bm) eine quarz-latiandesitische bis rhyodacitische Zusammensetzung haben. Es sind aber alles kalkalkaline Gesteine, die in den Bereich der Kontinentalrand-Andesite gehören. - Es wird angenommen, daß die Gesteine des Thera-Vulkans aus einer Magmakammer stammen. Während Zeiten ± kontinuierlicher, explosiver Tätigkeit wurden die Aschen und Schlacken der T5-Serien gefördert, die gegenüber den Bimsstein-Folgen relativ basisch sind. Während längerer Ruheperioden (Bodenhorizonte am Top der Tc-Folgen) differenzierte die Schmelze in der Magmakammer, vorwiegend durch Kristallfraktionierung. In den paroxysmalen Ausbrüchen wurden dann die sauren, gasreichen Bimssteine des Bu, Bm und Bo gefördert. - Anhand der lithologischen und geochemischen Untersuchungen ließen sich die etwaigen Eruptionszentren, die Ausbruchsmechanismen und der Ablagerungstyp der Schichten herleiten und daraus die Vulkangeschichte rekonstruieren, wie sie in vier Tabellen übersichtlich zusammengefaßt sind. - Schließlich sollen paläomorphologische Karten die einzelnen Stadien des Thera-Vulkans veranschaulichen.
Resumo:
Major and minor (Mn, Sr, Ba, V, Cr, Ni, Co, Zn, Cu, Zr, Y, Sc) elements and mineralogic compositions were determined on bulk sediments collected during Ocean Drilling Program Leg 135. Three classes of sediment samples from holes drilled in the Lau Basin are discriminated by mineralogy and major element data. Samples labeled Class 1 are significantly enriched in biogenic calcite and occur predominantly in the northern part of the basin (Sites 834-835), whereas those of Class 3 are mostly enriched in volcanogenic material and are predominant in the central part of the basin (Sites 836-839). The minor element composition records the effects of the hydrothermal activity on the sediments. In the northern area of the basin (Sites 834-835), sedimentation is characterized by higher accumulation rates of the carbonate and hydrothermal fractions. These sediments are probably reworked predominantly, transported in the water column, and then settled locally. Thus, ponded sediments are probably responsible to this high accumulation rates. Diagenetic processes altered the volcanic material to a grade corresponding to the stability of phillipsite. In the central area of the basin (Sites 836-839), sedimentation is characterized by the action of bottom currents preferentially reworking the carbonate and hydrothermal fractions. Volcanogenic accumulation rates are greater at these sites than in the northern Lau Basin. Alteration of volcanic material is more important deeper in the holes and records authigenesis of clay rich in Fe-Mg, most likely smectite. Locally, clay minerals have apparently incorporated Cr and other ore-forming elements.
Resumo:
Peridotites (diopside-bearing harzburgites) found at 13°N of the Mid-Atlantic Ridge fall into two compositional groups. Peridotites P1 are plagioclase-free rocks with minerals of uniform composition and Ca-pyroxene strongly depleted in highly incompatible elements. Peridotites P2 bear evidence of interaction with basic melt: mafic veinlets; wide variations in mineral composition; enrichment of minerals in highly incompatible elements (Na, Zr, and LREE); enrichment of minerals in moderately incompatible elements (Ti, Y, and HREE) from P1 level to abundances 4-10 times higher toward the contacts with mafic aggregates; and exotic mineral assemblages Cr-spinel + rutile and Cr-spinel + ilmenite in peridotite and pentlandite + rutile in mafic veinlets. Anomalous incompatible-element enrichment of minerals from peridotites P2 occurred at the spinel-plagioclase facies boundary, which corresponds to pressure of about 0.8-0.9 GPa. Temperature and oxygen fugacity were estimated from spinel-orthopyroxene-olivine equilibria. Peridotites P1 with uniform mineral composition record temperature of the last complete recrystallization at 940-1050°C and FMQ buffer oxygen fugacity within the calculation error. In peridotites P2, local assemblages have different compositions of coexisting minerals, which reflects repeated partial recrystallization during heating to magmatic temperatures (above 1200°C) and subsequent reequilibration at temperatures decreasing to 910°C and oxygen fugacity significantly higher than FMQ buffer (delta log fO2 = 1.3-1.9). Mafic veins are considered to be a crystallization product from basic melt enriched in Mg and Ni via interaction with peridotite. The geochemical type of melt reconstructed by the equilibrium with Ca-pyroxene is defined as T-MORB: (La/Sm)_N~1.6 and (Ce/Yb) )_N~2.3 that is well consistent with compositional variations of modern basaltic lavas in this segment of the Mid-Atlantic Ridge, including new data on quenched basaltic glasses.