683 resultados para Fenótipo luminal
Resumo:
We are all born germ-free. Following birth we enter into a lifelong relationship with microbes residing on our body's surfaces. The lower intestine is home to the highest microbial density in our body, which is also the highest microbial density known on Earth (up to 10(12) /g of luminal contents). With our indigenous microbial cells outnumbering our human cells by an order of magnitude our body is more microbial than human. Numerous immune adaptations confine these microbes within the mucosa, enabling most of us to live in peaceful homeostasis with our intestinal symbionts. Intestinal epithelial cells not only form a physical barrier between the bacteria-laden lumen and the rest of the body but also function as multi-tasking immune cells that sense the prevailing microbial (apical) and immune (basolateral) milieus, instruct the underlying immune cells, and adapt functionally. In the constant effort to ensure intestinal homeostasis, the immune system becomes educated to respond appropriately and in turn immune status can shape the microbial consortia. Here we review how the dynamic immune-microbial dialogue underlies maturation and regulation of the immune system and discuss recent findings on the impact of diet on both microbial ecology and immune function.
Resumo:
AIM: To evaluate the influence of locally active Crohn's disease on systemic small-bowel motility in patients with chronic Crohn's disease compared to healthy individuals. MATERIAL AND METHODS: Fifteen healthy individuals (11 men, four women; mean age 37 years) and 20 patients with histopathologically proven active (n = 15; 10 women, 5 men; mean age 45 years) or chronic (n = 5; four women, one man; mean age 48 years) Crohn's disease were included in this institutional review board-approved, retrospective study. Magnetic resonance imaging (MRI; 1.5 T) was performed after standardized preparation. Two-dimensional (2D) cine sequences for motility acquisition were performed in apnoea (27 s). Motility assessment was performed using dedicated software in three randomly chosen areas of the small-bowel outside known Crohn's disease-affected hotspots. The main quantitative characteristics (frequency, amplitude, occlusion rate) were compared using Student's t-test and one-way analysis of variance (ANOVA). RESULTS: Three randomly chosen segments were analysed in each participant. Patients with active Crohn's disease had significantly (p < 0.05) reduced contraction frequencies (active Crohn's disease: 2.86/min; chronic: 4.14/min; healthy: 4.53/min) and luminal occlusion rates (active: 0.43; chronic: 0.70; healthy: 0.73) compared to healthy individuals and patients with chronic Crohn's disease. Contraction amplitudes were significantly reduced during active Crohn's disease (6.71 mm) compared to healthy participants (10.14 mm), but this only reached borderline significance in comparison to chronic Crohn's disease (8.87 mm). Mean bowel lumen diameter was significantly (p = 0.04) higher in patients with active Crohn's disease (16.91 mm) compared to healthy participants (14.79 mm) but not in comparison to patients with chronic Crohn's disease (13.68). CONCLUSION: The findings of the present study suggest that local inflammatory activity of small-bowel segments in patients with active Crohn's disease alters small-bowel motility in distant, non-affected segments. The motility patterns revealed reduced contraction-wave frequencies, amplitudes, and decreased luminal occlusion rates. Thus evaluation of these characteristics potentially helps to differentiate between chronic and active Crohn's disease.
Resumo:
Aims: To investigate the extent and the circumferential distribution of the neointima tissue developed following an Absorb bioresorbable vascular scaffold (BVS) implantation. Methods and results: Twenty-three patients who were treated with the Absorb BVS and had optical coherence tomographic examination after scaffold implantation, at six-month and at two-year follow-up, were included in the current analysis. The lumen and the scaffold borders were detected and the circumferential thickness of the neointima was measured at one degree intervals. The symmetry of the neointima was defined as: minimum/maximum thickness. The lumen area was decreased at six months compared to baseline but it did not change between six-month and two-year follow-up (baseline: 7.49 [6.13-8.00] mm2, six months: 6.31 (4.75-7.06) mm2, two years: 6.01 [4.67-7.11] mm2, p=0.373). However, the mean neointima thickness (six months: 189 [173-229] μm, two years: 258 [222-283] μm, p<0.0001) and the symmetry index of the neointima (six months: 0.06 [0.02-0.09], two years: 0.27 [0.24-0.36], p<0.0001) were increased at two years. Full circumferential coverage of the vessel wall by neointima tissue was seen in 91% of the studied frames at two years. Conclusions: This study demonstrates that after an Absorb BVS implantation neointima tissue develops that covers almost the whole circumference of the vessel wall. In contrast to the metallic stents, the neointima tissue does not compromise the luminal dimensions. Further research is required to evaluate the neointimal characteristics and assess the potential value of the device in passivating high-risk plaques.
Resumo:
Postnatally, the mammary gland undergoes continuous morphogenesis and thereby is especially prone to malignant transformation. Thus, the maintenance of the epithelium depends on a tight control of stem cell recruitment. We have previously shown that epithelial overexpression of the EphB4 receptor results in defective mammary epithelial development and conferred a metastasizing tumor phenotype on experimental mouse mammary tumors accompanied by a preponderance of progenitor cells. To analyze the effect of EphB4 overexpression on mammary epithelial cell fate, we have used Fluorescence Activated Cell Sorting (FACS) analyses to quantify epithelial sub-populations and repopulation assays of cleared fat pads to investigate their regenerative potential. These experiments revealed that deregulated EphB4 expression leads to an augmentation of bi-potent progenitor cells and to a shift of the differentiation pathway towards the luminal lineage. The analyses of the ductal outgrowths indicated that EphB4 overexpression leads to enforced branching activity, impedes ductal differentiation and stimulates angiogenesis. To elucidate the mechanisms forwarding EphB4 signals, we have compared the expression profile of defined cell populations between EphB4 transgene and wild type mammary glands concentrating on the wnt signaling pathway and on genes implicated in cell migration. With respect to wnt signaling, the progenitor cell population was the most affected, whereas the stem cell-enriched population showed the most pronounced deregulation of migration-associated genes. Thus, the luminal epithelial EphB4 signaling contributes, most likely via wnt signaling, to the regulation of migration and cell fate of early progenitors and is involved in the determination of branching points along the ductal tree.
Resumo:
The Duffy antigen/receptor for chemokines, DARC, belongs to the family of atypical heptahelical chemokine receptors that do not couple to G proteins and therefore fail to transmit conventional intracellular signals. Here we show that during experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, the expression of DARC is upregulated at the blood-brain barrier. These findings are corroborated by the presence of a significantly increased number of subcortical white matter microvessels staining positive for DARC in human multiple sclerosis brains as compared to control tissue. Using an in vitro blood-brain barrier model we demonstrated that endothelial DARC mediates the abluminal to luminal transport of inflammatory chemokines across the blood-brain barrier. An involvement of DARC in experimental autoimmune encephalomyelitis pathogenesis was confirmed by the observed ameliorated experimental autoimmune encephalomyelitis in Darc(-/-) C57BL/6 and SJL mice, as compared to wild-type control littermates. Experimental autoimmune encephalomyelitis studies in bone marrow chimeric Darc(-/-) and wild-type mice revealed that increased plasma levels of inflammatory chemokines in experimental autoimmune encephalomyelitis depended on the presence of erythrocyte DARC. However, fully developed experimental autoimmune encephalomyelitis required the expression of endothelial DARC. Taken together, our data show a role for erythrocyte DARC as a chemokine reservoir and that endothelial DARC contributes to the pathogenesis of experimental autoimmune encephalomyelitis by shuttling chemokines across the blood-brain barrier.
Resumo:
BACKGROUND Numerous studies have demonstrated an association between endothelial shear stress (ESS) and neointimal formation after stent implantation. However, the role of ESS on the composition of neointima and underlying plaque remains unclear. METHODS Patients recruited in the Comfortable AMI-IBIS 4 study implanted with bare metal stents (BMS) or biolimus eluting stents (BES) that had biplane coronary angiography at 13month follow-up were included in the analysis. The intravascular ultrasound virtual-histology (IVUS-VH) and the angiographic data were used to reconstruct the luminal surface, and the stent in the stented segments. Blood flow simulation was performed in the stent surface, which was assumed to represent the luminal surface at baseline, to assess the association between ESS and neointima thickness. The predominant ESS was estimated in 3-mm segments and was correlated with the amount of neointima, neointimal tissue composition, and with the changes in the underlying plaque burden and composition. RESULTS Forty three patients (18 implanted with BMS and 25 with BES) were studied. In both stent groups negative correlations were noted between ESS and neointima thickness in BMS (P<0.001) and BES (P=0.002). In BMS there was a negative correlation between predominant ESS and the percentage of the neointimal necrotic core component (P=0.015). In BES group, the limited neointima formation did not allow evaluation of the effect of ESS on its tissue characteristics. ESS did not affect vessel wall remodeling and the plaque burden and composition behind BMS (P>0.10) and BES (P>0.45). CONCLUSIONS ESS determines neointimal formation in both BMS and BES and affects the composition of the neointima in BMS. Conversely, ESS does not impact the plaque behind struts irrespective of stent type throughout 13months of follow-up.
Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis
Resumo:
In the mammalian gastrointestinal tract the close vicinity of abundant immune effector cells and trillions of commensal microbes requires sophisticated barrier and regulatory mechanisms to maintain vital host-microbial interactions and tissue homeostasis. During co-evolution of the host and its intestinal microbiota a protective multilayered barrier system was established to segregate the luminal microbes from the intestinal mucosa with its potent immune effector cells, limit bacterial translocation into host tissues to prevent tissue damage, while ensuring the vital functions of the intestinal mucosa and the luminal gut microbiota. In the present review we will focus on the different layers of protection in the intestinal tract that allow the successful mutualism between the microbiota and the potent effector cells of the intestinal innate and adaptive immune system. In particular, we will review some of the recent findings on the vital functions of the mucus layer and its site-specific adaptations to the changing quantities and complexities of the microbiota along the (gastro-) intestinal tract. Understanding the regulatory pathways that control the establishment of the mucus layer, but also its degradation during intestinal inflammation may be critical for designing novel strategies aimed at maintaining local tissue homeostasis and supporting remission from relapsing intestinal inflammation in patients with inflammatory bowel diseases.
Resumo:
BACKGROUND INFORMATION Over the past decades, cryo-electron microscopy of vitrified specimens has yielded a detailed understanding of the tubulin and microtubule structures of samples reassembled in vitro from purified components. However, our knowledge of microtubule structure in vivo remains limited by the chemical treatments commonly used to observe cellular architecture using electron microscopy. RESULTS We used cryo-electron microscopy and cryo-electron tomography of vitreous sections to investigate the ultrastructure of microtubules in their cellular context. Vitreous sections were obtained from organotypic slices of rat hippocampus and from Chinese-hamster ovary cells in culture. Microtubules revealed their protofilament ultrastructure, polarity and, in the most favourable cases, molecular details comparable with those visualized in three-dimensional reconstructions of microtubules reassembled in vitro from purified tubulin. The resolution of the tomograms was estimated to be approx. 4 nm, which enabled the detection of luminal particles of approx. 6 nm in diameter inside microtubules. CONCLUSIONS The present study provides a first step towards a description of microtubules, in addition to other macromolecular assemblies, in an unperturbed cellular context at the molecular level. As the resolution appears to be similar to that obtainable with plunge-frozen samples, it should allow for the in vivo identification of larger macromolecular assemblies in vitreous sections of whole cells and tissues.
Resumo:
BACKGROUND Tubules and sheets of endoplasmic reticulum perform different functions and undergo inter-conversion during different stages of the cell cycle. Tubules are stabilized by curvature inducing resident proteins, but little is known about the mechanisms of endoplasmic reticulum sheet stabilization. Tethering of endoplasmic reticulum membranes to the cytoskeleton or to each other has been proposed as a plausible way of sheet stabilization. RESULTS Here, using fluorescence microscopy we show that the previously proposed mechanisms, such as membrane tethering via GFP-dimerization or coiled coil protein aggregation do not explain the formation of the calnexin-induced organized smooth endoplasmic reticulum membrane stacks. We also show that the LINC complex proteins known to serve a tethering function in the nuclear envelope are excluded from endoplasmic reticulum stacks. Finally, using cryo-electron microscopy of vitreous sections methodology that preserves cellular architecture in a hydrated, native-like state, we show that the sheet stacks are highly regular and may contain ordered arrays of macromolecular complexes. Some of these complexes decorate the cytosolic surface of the membranes, whereas others appear to span the width of the cytosolic or luminal space between the stacked sheets. CONCLUSION Our results provide evidence in favour of the hypothesis of endoplasmic reticulum sheet stabilization by intermembrane tethering.
Resumo:
INTRODUCTION Since the initial publication in 2000, Angiotensin II-infused mice have become one of the most popular models to study abdominal aortic aneurysm in a pre-clinical setting. We recently used phase contrast X-ray based computed tomography to demonstrate that these animals develop an apparent luminal dilatation and an intramural hematoma, both related to mural ruptures in the tunica media in the vicinity of suprarenal side branches. AIMS The aim of this narrative review was to provide an extensive overview of small animal applicable techniques that have provided relevant insight into the pathogenesis and morphology of dissecting AAA in mice, and to relate findings from these techniques to each other and to our recent PCXTM-based results. Combining insights from recent and consolidated publications we aimed to enhance our understanding of dissecting AAA morphology and anatomy. RESULTS AND CONCLUSION We analyzed in vivo and ex vivo images of aortas obtained from macroscopic anatomy, histology, high-frequency ultrasound, contrast-enhanced micro-CT, micro-MRI and PCXTM. We demonstrate how in almost all publications the aorta has been subdivided into a part in which an intact lumen lies adjacent to a remodeled wall/hematoma, and a part in which elastic lamellae are ruptured and the lumen appears to be dilated. We show how the novel paradigm fits within the existing one, and how 3D images can explain and connect previously published 2D structures. We conclude that PCXTM-based findings are in line with previous results, and all evidence points towards the fact that dissecting AAAs in Angiotensin II-infused mice are actually caused by ruptures of the tunica media in the immediate vicinity of small side branches.
Resumo:
Activator protein 2α (AP-2) is a transcription factor known to play a crucial role in the progression of malignant melanoma, colorectal carcinoma, and breast cancer. Several AP-2 target genes are known to be deregulated in prostate cancer, therefore, we hypothesize that loss AP-2 expression plays a causal role in prostate carcinogenesis. Immunofluorescent staining for AP-2 of 30 radical prostatectomy specimens demonstrated that while AP-2 was highly expressed in normal prostate epithelium, its expression was lost in most cases of high grade prostatic intraepithelial neoplasia (PIN), and all cases of prostate cancer studied. Additional analyses demonstrated that AP-2 was associated with normal luminal differentiation and it was not expressed in the basal cell layer. In cell lines, AP-2 was strongly expressed in immortalized normal prostate epithelial cells, whereas low expression was observed in the LNCaP, LNCaP-LN3, and PC3M-LN4 prostate cancer cell lines. Transfection of the highly tumorigenic and metastatic cell line PC3M-LN4 with the AP-2 gene significantly decreased tumor growth in the prostate of nude mice (p = 0.032) and inhibited metastases to the lymph nodes. Moreover, transfection of the low tumorigenic, low metastatic cell line LNCaP-LN3 with full length AP-2; resulted in complete inhibition of tumor incidence in the AP-2 transfectants (0/19) vs. neo control (10/16). A potential mechanism for this loss of tumorigenicity was the modulation of gene expression in prostate cancer cells that mimicked the normal phenotype. Analysis of differential expression between neo control- and AP-2-transfected cells in vitro and in tumors demonstrated low VEGF expression in AP-2 transfectants. We further demonstrated that AP-2 acted as a transcriptional repressor of the VEGF promoter by binding to a GC-rich region located between −88 and −66. This region contains an AP-2 consensus element overlapping two Sp1 consensus elements. We found that Sp3 and AP-2 bound to this region in a mutually exclusive manner to promote activation or repression. Increased VEGF expression has been observed in high grade PIN and in prostate cancer. Here we provide evidence that this early molecular change could be a result of loss of AP-2 expression in the prostatic epithelium. ^
Resumo:
The uterine endometrium is a major target for the estrogen. However, the molecular basis of estrogen action in the endometrium is largely unknown. I have used two approaches to study the effects of estrogen on the endometrium. One approach involved the study of the interaction between estrogen and retinoic acid (RA) pathways in the endometrium. I have demonstrated that estrogen administration to rodents and estrogen replacement therapy (ERT) in postmenopausal women selectively induced the endometrial expression of retinaldehyde dehydrogenase II (RALDH2), a critical enzyme of RA biosynthesis. RALDH2 was expressed exclusively in the stromal cells, especially in the stroma adjacent to the luminal and glandular epithelia. The induction of RALDH2 by estrogen required estrogen receptor and occurred via a direct increase in RALDH2 transcription. Among the three RA receptors, estrogen selectively induced the expression of RARα. In parallel, estrogen also increased the utilization of all-trans retinol (the substrate for RA biosynthesis) and the expression of two RA-regulated marker genes, cellular retinoic acid binding protein II (CRABP2) and tissue transglutaminase (tTG) in the endometrium. Thus estrogen coordinately upregulated both the production and signaling of RA in both the rodent and human endometrium. This coordinate upregulation of RA system appeared to play a role in counterbalancing the stimulatory effects of estrogen on the endometrium, since the depletion of endogenous RA in mice led to an increase in estrogen-stimulated stromal proliferation and endometrial Akt phosphorylation. In addition, I have also used a systematic approach (DNA microarray) to categorize genes and pathways affected by the ERT in the endometrium of postmenopausal women and identified a novel estrogen-regulated gene EIG121. EIG121 was exclusively expressed in the glandular epithelial cells of the endometrium and induced by estrogen in vivo and in cultured cell lines. Compared with the normal endometrium, EIG121 was highly overexpressed in type 1 endometrial cancer, but profoundly suppressed in type 2 endometrial tumors. Taken together, these studies suggested that estrogen regulates the expression of many genes of both the pro-proliferative and anti-proliferative pathways and the abnormality of these pathways may increase the risks for estrogen-dependent endometrial hyperplasia and endometrial cancer. ^
Resumo:
Recent progress in diagnostic tools allows many breast cancers to be detected at an early pre-invasive stage. Thus, a better understanding of the molecular basis of early breast cancer progression is essential. 14-3-3 is a family of highly conserved and ubiquitously expressed proteins that are expressed in all eukaryotic organisms. In mammals there are seven isoforms, which bind to phosphor-serine/threonine residues regulating essential cellular processes such as signal transduction, cell cycle progression, and apoptosis. Our laboratory has discovered that a particular 14-3-3 family member, Zeta, is overexpressed in over 40% of breast tumor tissues. Furthermore, I examined the stage of breast disease in which 14-3-3ζ overexpression occurs and found that increased expression of 14-3-3ζ begins at the stage of atypical ductal hyperplasia, a very early stage of breast disease that confers increased risk for progress toward breast cancer. To determine whether 14-3-3ζ overexpression is a decisive early event in breast cancer, I overexpressed 14-3-3ζ in MCF10A cells, a non-transformed mammary epithelial cell (MEC) line and examined its impact on acini formation in a three dimensional (3D) culture model which simulates a basic unit of structure in the mammary gland. I discovered that 14-3-3ζ overexpression severely disrupted the acini architecture resulting in the disruption of polarity and luminal filling. Both are critical morphological events in the pre-neoplastic breast disease. This thesis focuses on the molecular mechanism of luminal filling. Proper lumen formation is a result of anoikis, a specific type apoptosis of cells not attached to the basement membrane. I found that 14-3-3ζ overexpression conferred a resistance to anoikis. Additionally, 14-3-3ζ overexpression in MCF10A cells and in MECs from 14-3-3ζ transgenic mice reduced expression of p53, which is known to mediate anoikis. Mechanistically, 14-3-3ζ induced hyperactivation of the PI3K/Akt pathway which led to phosphorylation and translocation of the MDM2 to the nucleus resulting in increased p53 degradation. Ectopic expression of p53 restored luminal apoptosis in 14-3-3ζ overexpressing MCF10A acini in 3D cultures. These data suggest that 14-3-3ζ overexpression is a critical event in early breast disease and down-regulation of p53 is one of the mechanisms by which 14-3-3ζ alters MEC acini structure and may increase the risk of progression to breast cancer. ^
Resumo:
In the endometrium, hormonal effects on epithelial cells are often elicited through stromal hormone receptors via unknown paracrine mechanisms. Several lines of evidence support the hypothesis that Wnts participate in stromal-epithelial cell communication and thus mediate hormone action. Characterization of specific Wnt signaling components in the endometrium was performed using cellular localization studies and evaluating hormone effects in a rat model. Wnt7a was expressed in the luminal epithelium, whereas the extracellular Wnt modulator, SFRP4, was localized to the endometrial stroma. SFRP4 expression is significantly decreased in endometrial carcinoma and aberrant Wnt7a signaling has been shown to cause uterine defects and contribute to the onset of disease. The specific Fzds and SFRPs that bind Wnt7a and the particular signal transduction pathway each Wnt7a-Fzd pair activates have not been identified. Additionally, the function of Wnt7a and SFRP4 in the endometrium has not been addressed. A survey of all Wnt signaling proteins expressed in the endometrium was conducted and Fzd5 and Fzd10 were identified as two receptors capable of transducing the Wnt7a signal. Biologically active recombinant Wnt7a and SFRP4 proteins were purified for quantitative biochemical studies. In Ishikawa cells, Wnt7a binding to Fzd5 activated β-catenin/canonical Wnt signaling and increased cellular proliferation. Wnt7a signaling mediated by Fzd10 induced a non-canonical/JNK-responsive pathway. SFRP4 suppressed Wnt7a action in both an autocrine and paracrine manner. Treatment with SFRP4 protein and overexpression of SFRP4 inhibited endometrial cancer cell growth and induced apoptosis in vitro. A split-eGFP complementation assay was developed to visually detect Wnt7a-Fzd interactions and subsequent pathway activation in cells. By employing a unique ELISA-based protein-protein binding technique, it was demonstrated that Wnt7a binds to SFRP4 and Fzd5 with equal nanomolar affinity. The development of these novel biological tools could lead to a better understanding of Wnt-protein interactions and the identification of new modulators of Wnt signaling. This study supports a mechanism by which the nature of the Wnt7a signal in the endometrium is dependent upon the Fzd repertoire of the cell and can be regulated by SFRP4. The potential tumor suppressor function of SFRP4 suggests it may serve as a therapeutic target for endometrial carcinoma. ^
Resumo:
Programmed cell death is characterized by tightly controlled temporal and spatial intracellular Ca2+ responses that regulate the release of key proapoptotic proteins from mitochondria to the cytosol. Since apoptotic cells retain their ability to exclude membrane impermeable dyes, it is possible that the cells evoke repair mechanisms that, similar to those in normal cells, patch any damaged areas of the plasma membrane that preclude dye permeation. One critical distinction between plasma membrane repair in normal and apoptotic cells is the preservation of membrane lipid asymmetry. In normal cells, phosphatidylserine (PS) retains its normal asymmetric distribution in the inner membrane leaflet. In apoptotic cells, PS redistributes to the outer membrane leaflet by a Ca2+ dependent mechanism where it serves as a recognition ligand for phagocytes(1). In this study Ca 2+-specific fluorescent probes were employed to investigate the source of Ca2+ required for PS externalization. Experiments employing Rhod2-AM, calcium green 1, fura2-AM and the aqueous space marker FITC-dextran, demonstrated that exogenous Ca2+ imported with endocytotic vesicles into the cell was released into the cytosol in an apoptosis dependent manner. Labeling of the luminal side of the endocytotic vesicles with FITC-annexin 5, revealed that membrane lipid asymmetry was disrupted upon endosome formation. Specific labeling of the lysosomal luminal surface with the non-exchangeable membrane lipid probe, N-rhodamine-labeled-phosphatidylethanolamine (N-Rho-PE) and the lysosomal specific probe, lysotracker green, facilitated real-time monitoring of plasma membrane-to-endosome-to-lysosome transitions. Enforced elevation of cytosolic [Ca2+] with ionophore resulted in the redistribution of N-Rho-PE and PS from the inner membrane leaflet to the PM outer membrane leaflet. Identical results were obtained during apoptosis, however, the redistribution of both N-RhoPE and PS was dependent on the release of intra-lysosomal Ca2+ to the cytosol. Additional experiments suggested that lipid redistribution was dependent on the activity of lysosomal phospholipase A2 activity since lipid trafficking was abolished in the presence of chloroquine and lipase inhibitors. These data indicate that endosomal/lysosomal Ca2+ and the fusion of hybrid organelles to the plasma membrane regulates the externalization of PS during apoptosis. ^