799 resultados para Femtosecond laser facility
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
A long period grating (LPG) written in a standard optical fibre was modified by using a femtosecond laser to induce an asymmetric change in the cladding's refractive index. This device produced blue and red wavelength shifts depending on the orientation of applied curvature, with maximum sensitivities of -1.6 nm m and +3.8 nm m, suggesting that this type of LPG may be useful as a shape sensor.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
We present a practical approach to the numerical optimisation of the guiding properties of buried microstructured waveguides, which can be fabricated in a z-cut lithium niobate (LiNbO3) crystal by the method of direct femtosecond laser inscription. We demonstrate the possibility to extend the spectral range of low-loss operation of the waveguide into the mid-infrared region beyond 3um.
Resumo:
Microchannels are fabricated into conventional single-mode fibers by femtosecond laser processing and chemical etching. Fabrication limitations imposed by the fiber geometry are highlighted and resolved through a simple technique without compromising fabrication flexibility. A microfluidic fiber device consisting of a 4 μm wide microchannel that intersects the fiber core for refractive index sensing is further demonstrated. © 2006 Optical Society of America.
Resumo:
We review our recent work on the numerical design and optimisation of buried, micro-structured waveguides (WGs) that can be formed in a lithium niobate (LiNbO3) crystal by the method of direct femtosecond laser inscription. We also report on the possibility of fabricating such WGs using a high-repetition-rate, chirped-pulse oscillator system. Refractive index contrasts as high as -0.0127 have been achieved for individual modification tracks. The results pave the way for developing micro-structured WGs with low-loss operation across a wide spectral range, extending into the mid-infrared region up to the end of the transparency range of the host material. © 2014 IEEE.
Resumo:
We study numerically depressed-cladding, buried waveguides that can be formed in a lithium niobate crystal by femtosecond laser writing. We demonstrate that the guiding properties can be controlled by the waveguide structural characteristics.
Resumo:
A 1.2X500μm slot was engraved across a fiber Bragg grating (FBG) using femtosecond laser patterning and chemical etching. liquid core FBGs were constructed and their sensitivity to refractive index of up to 10-6/pm was measured.
Resumo:
We describe how the guiding properties of buried, micro-structured waveguides that can be formed in a lithium niobate crystal by direct femtosecond laser writing can be optimized for low-loss operation in the mid-infrared region beyond 3 μm.
Resumo:
We report an in-fiber laser mode locker based on carbon nanotube with n-methyl-2-pryrrolidone solvent filled in-fiber microchamber. Symmetrically femtosecond laser fabricated in-fiber microchamber with randomly oriented nanotubes assures polarization insensitive oscillation of laser mode locking. The proposed and demonstrated passively mode locked fiber laser shows higher energy soliton output. The laser has an output power of ∼29 mW (corresponding to 11 nJ energy). It shows stable soliton output with a repetition rate of ∼2.3 MHz and pulse width of ∼3.37 ps. © 2012 American Institute of Physics.
Resumo:
Long period gratings written into a standard optical fibre were modified by a femtosecond laser, which produced an asymmetric change to the cladding's refractive index resulting in a directional bend sensor.
Resumo:
Full text: It seems a long time ago now since we were at the BCLA conference. The excellent FIFA World Cup in Brazil kept us occupied over the summer as well as Formula 1, Wimbledon, Tour de France, Commonwealth Games and of course exam paper marking! The BCLA conference this year was held in Birmingham at the International Convention Centre which again proved to be a great venue. The number of attendees overall was up on previous years, and at a record high of 1500 people. Amongst the highlights at this year's annual conference was the live surgery link where Professor Sunil Shah demonstrated the differences in technique between traditional phacoemulsification cataract surgery and femtosecond assisted phacoemulsification cataract surgery. Dr. Raquel Gil Cazorla, a research optometrist at Aston University, assisted in the procedure including calibrating the femtosecond laser. Another highlight for me was the session that I chaired, which was the international session organised by IACLE (International Association of CL Educators). There was a talk by Mirjam van Tilborg about dry eye prevalence in the Netherlands and how it was managed by medical general practitioners (GPs) or optometrists. It was interesting to know that there are only 2 schools of optometry there and currently under 1000 registered optometrists there. It also seems that GPs were more likely to blame CL as the cause for dry eye whereas optometrists who had a fuller range of tests were better at solving the issue. The next part of the session included the presentation of 5 selected posters from around the world. The posters were also displayed in the main poster area but were selected to be presented here as they had international relevance. The posters were: 1. Motivators and Barriers for Contact Lens Recommendation and Wear by Nilesh Thite (India) 2. Contact lens hygiene among Saudi wearers by Dr. Ali Masmaly (Saudi) 3. Trends of contact lens prescribing and patterns of contact lens practice in Jordan by Dr. Mera Haddad (Jordan) 4. Contact Lens Behaviour in Greece by Dr. Dimitra Makrynioti (Greece) 5. How practitioners inform ametropes about the benefits of contact lenses and overcome the potential barriers: an Italian survey, by Dr. Fabrizio Zeri (Italy) It was interesting to learn about CL practice in different parts, for example the CL wearing population ration in Saudi Arabia is around 1:2 Male:Female (similar to other parts of the world) and although the sale of CL is restricted to registered practitioners there are many unregistered outlets, like clothing stores, that flout the rules. In Jordan some older practitioners will still advise patients to use tap water or even saliva! But thankfully the newer generation of practitioners have been educated not to advise this. In Greece one of the concerns was that some practitioners may advise patients to use disposable lenses for longer than they should and again it seems to be the practitioners with inadequate education that would do this. In India it was found that cost was one barrier to using contact lenses but also some practitioners felt that they shouldn’t offer CLs due to cost too. In Italy sensitive eyes and CL care and maintenance were the barriers to CL wear but the motivators were vision and comfort and aesthetics. Finally the international session ended with the IACLE travel award and educator awards presented by IACLE president Shehzad Naroo and BCLA President Andrew Yorke. The travel award went to Wang Ling, Jinling Institute of Technology, Nanjing, China. There were 3 regional Contact Lens Educator of the Year Awards sponsored by Coopervision and presented by Dr. J.C. Aragorn of Coopervision. 1. Asia Pacific Region – Dr. Rajeswari Mahadevan of Sankara Nethralaya Medical Research Foundation, Chennai, India 2. Americas Region – Dr. Sergio Garcia of University of La Salle, Bogotá and the University Santo Tomás, Bucaramanga, Colombia 3. Europe/Africa – Middle East Region: Dr. Eef van der Worp, affiliated with the University of Maastricht, the Netherlands The posters above were just a small selection of those displayed at this year's BCLA conference. If you missed the BCLA conference then you can see the abstracts for all posters and talks in a virtual issue of CLAE very soon. The poster competition was kindly sponsored by Elsevier. The poster winner this year was: Joan Gispets – Corneal and Anterior Chamber Parameters in Keratoconus The 3 runners up were: Debby Yeung – Scleral Lens Central Corneal Clearance Assessment with Biomicroscopy Sarah L. Smith – Subjective Grading of Lid Margin Staining Heiko Pult – Impact of Soft Contact Lenses on Lid Parallel Conjunctival Folds My final two highlights are a little more personal. Firstly, I was awarded Honorary Life Fellowship of the BCLA for my work with the Journal, and I would like to thank the BCLA, Elsevier, the editorial board of CLAE, the reviewers and the authors for their support of my role. My final highlight from the BCLA conference this year was the final presentation of the conference – the BCLA Gold Medal award. The recipient this year was Professor Philip Morgan with his talk ‘Changing the world with contact lenses’. Phil was the person who advised me to go to my first BCLA conference in 1994 (funnily he didn’t attend himself as he was busy getting married!) and now 20 years later he was being honoured with the accolade of being the BCLA Gold Medallist. The date of his BCLA medal addressed was shared with his father's birthday so a double celebration for Phil. Well done to outgoing BCLA President Andy Yorke and his team at the BCLA (including Nick Rumney, Cheryl Donnelly, Sarah Greenwood and Amir Khan) on an excellent conference. And finally welcome to new President Susan Bowers. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this work, a phase-shifted fiber Bragg grating is proposed for strain sensing at extreme temperatures. The grating structure is written in bare standard single mode fiber, using the point-by-point femtosecond laser technique. Strain measurements are performed at temperatures ranging from room temperature up to 900°C. By subjecting the sensor to such extreme conditions, the wavelength of the grating increases. © 2014 OSA.
Resumo:
We present novel Terahertz (THz) emitting optically pumped Quantum Dot (QD) photoconductive (PC) materials and antenna structures on their basis both for pulsed and CW pumping regimes. Full text Quantum dot and microantenna design - Presented here are design considerations for the semiconductor materials in our novel QD-based photoconductive antenna (PCA) structures, metallic microantenna designs, and their implementation as part of a complete THz source or transceiver system. Layers of implanted QDs can be used for the photocarrier lifetime shortening mechanism[1,2]. In our research we use InAs:GaAs QD structures of varying dot layer number and distributed Bragg reflector(DBR)reflectivity range. According to the observed dependence of carrier lifetimes on QD layer periodicity [3], it is reasonable to assume that electron lifetimes can be potentially reduced down to 0.45ps in such structures. Both of these features; long excitation wavelength and short carriers lifetime predict possible feasibility of QD antennas for THz generation and detection. In general, relatively simple antenna configurations were used here, including: coplanar stripline (CPS); Hertzian-type dipoles; bow-ties for broadband and log-spiral(LS)or log-periodic(LP)‘toothed’ geometriesfor a CW operation regime. Experimental results - Several lasers are used for antenna pumping: Ti:Sapphire femtosecond laser, as well as single-[4], double-[5] wavelength, and pulsed [6] QD lasers. For detection of the THz signal different schemes and devices were used, e.g. helium-cooled bolometer, Golay cell and a second PCA for coherent THz detection in a traditional time-domain measurement scheme.Fig.1shows the typical THz output power trend from a 5 um-gap LPQD PCA pumped using a tunable QD LD with optical pump spectrum shown in (b). Summary - QD-based THz systems have been demonstrated as a feasible and highly versatile solution. The implementation of QD LDs as pump sources could be a major step towards ultra-compact, electrically controllable transceiver system that would increase the scope of data analysis due to the high pulse repetition rates of such LDs [3], allowing real-time THz TDS and data acquisition. Future steps in development of such systems now lie in the further investigation of QD-based THz PCA structures and devices, particularly with regards to their compatibilitywith QD LDs as pump sources. [1]E. U. Rafailov et al., “Fast quantum-dot saturable absorber for passive mode-locking of solid-State lasers,”Photon.Tech.Lett., IEEE, vol. 16 pp. 2439-2441(2004) [2]E. Estacio, “Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures. Appl.Phys.Lett., vol. 94 pp. 232104 (2009) [3]C. Kadow et al., “Self-assembled ErAs islands in GaAs: Growth and subpicosecond carrier dynamics,” Appl. Phys. Lett., vol. 75 pp. 3548-3550 (1999) [4]T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz, C. Reardon, and E. U. Rafailov, “Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device,” Appl. Phys. Lett., vol. 101(2012) [5]R. Leyman, D. I. Nikitichev, N. Bazieva, and E. U. Rafailov, “Multimodal spectral control of a quantum-dot diode laser for THz difference frequency generation,” Appl. Phys. Lett., vol. 99 (2011) [6]K.G. Wilcox, M. Butkus, I. Farrer, D.A. Ritchie, A. Tropper, E.U. Rafailov, “Subpicosecond quantum dot saturable absorber mode-locked semiconductor disk laser, ” Appl. Phys. Lett. Vol 94, 2511 © 2014 IEEE.
Resumo:
We report a linear response optical refractive index (RI) sensor, which is fabricated based on a micro-channel created within a Fabry Perot (F-P) cavity by chemical etching assisted by femtosecond laser inscription. The experimental results show the F-P resonance peak has a linear response with the RI of medium and the measuring sensitivity is proportion to the length of micro-channel. The sensor with 5 μm -long micro-channel exhibited an RI sensitivity of 1.15nm/RIU and this sensitivity increased to 9.08nm/RIU when widening the micro-channel to 35μm. Furthermore, such micro-channel FP sensors show a much broader RI sensing dynamic range (from 1.3 to 1.7) than other reported optical fiber sensors. © 2012 SPIE.