949 resultados para Fe chlorosis
Resumo:
SBR759 is a novel polynuclear iron(III) oxide–hydroxide starch·sucrose·carbonate complex being developed for oral use in chronic kidney disease (CKD) patients with hyperphosphatemia on hemodialysis. SBR759 binds inorganic phosphate released by food uptake and digestion in the gastro-intestinal tract increasing the fecal excretion of phosphate with concomitant reduction of serum phosphate concentrations. Considering the high content of ∼20% w/w covalently bound iron in SBR759 and expected chronic administration to patients, absorption of small amounts of iron released from the drug substance could result in potential iron overload and toxicity. In a mechanistic iron uptake study, 12 healthy male subjects (receiving comparable low phosphorus-containing meal typical for CKD patients: ≤1000 mg phosphate per day) were treated with 12 g (divided in 3 × 4 g) of stable 58Fe isotope-labeled SBR759. The ferrokinetics of [58Fe]SBR759-related total iron was followed in blood (over 3 weeks) and in plasma (over 26 hours) by analyzing with high precision the isotope ratios of the natural iron isotopes 58Fe, 57Fe, 56Fe and 54Fe by multi-collector inductively coupled mass spectrometry (MC-ICP-MS). Three weeks following dosing, the subjects cumulatively absorbed on average 7.8 ± 3.2 mg (3.8–13.9 mg) iron corresponding to 0.30 ± 0.12% (0.15–0.54%) SBR759-related iron which amounts to approx. 5-fold the basal daily iron absorption of 1–2 mg in humans. SBR759 was well-tolerated and there was no serious adverse event and no clinically significant changes in the iron indices hemoglobin, hematocrit, ferritin concentration and transferrin saturation.
Resumo:
Reinvestigation of more than 40 samples of minerals belonging to the wagnerite group (Mg, Fe, Mn)2(PO4)(F,OH) from diverse geological environments worldwide, using single-crystal X-ray diffraction analysis, showed that most crystals have incommensurate structures and, as such, are not adequately described with known polytype models (2b), (3b), (5b), (7b) and (9b). Therefore, we present here a unified superspace model for the structural description of periodically and aperiodically modulated wagnerite with the (3+1)-dimensional superspace group C2/c(0[beta]0)s0 based on the average triplite structure with cell parameters a [asymptotically equal to] 12.8, b [asymptotically equal to] 6.4, c [asymptotically equal to] 9.6 Å, [beta] [asymptotically equal to] 117° and the modulation vectors q = [beta]b*. The superspace approach provides a way of simple modelling of the positional and occupational modulation of Mg/Fe and F/OH in wagnerite. This allows direct comparison of crystal properties.
Resumo:
Trabecular bone is a porous mineralized tissue playing a major load bearing role in the human body. Prediction of age-related and disease-related fractures and the behavior of bone implant systems needs a thorough understanding of its structure-mechanical property relationships, which can be obtained using microcomputed tomography-based finite element modeling. In this study, a nonlinear model for trabecular bone as a cohesive-frictional material was implemented in a large-scale computational framework and validated by comparison of μFE simulations with experimental tests in uniaxial tension and compression. A good correspondence of stiffness and yield points between simulations and experiments was found for a wide range of bone volume fraction and degree of anisotropy in both tension and compression using a non-calibrated, average set of material parameters. These results demonstrate the ability of the model to capture the effects leading to failure of bone for three anatomical sites and several donors, which may be used to determine the apparent behavior of trabecular bone and its evolution with age, disease, and treatment in the future.
Resumo:
Tungsten contents in iron-manganese nodules and crusts from different parts of the World Ocean, as well as its relationships with a number of chemical elements are under consideration. A trend to correlation of tungsten with Fe, Ti, W, Pb, and Co is noticed. Comparison of tungsten contents in the nodules and host sediments indicates its low geochemical mobility.