731 resultados para Fatty acid profiles
Resumo:
This study of vertical fatty acid profiles, based on analysis of 58 fatty acids sampled at 3-mm intervals throughout the blubber column of a model marine mammal, the ringed seal (Pusa hispida), revealed three chemically distinct layers. The average depths of the outer and inner layers were quite consistent (~1.5 and ~1 cm, respectively). Consequently, the middle layer varied greatly in thickness, from being virtually absent in the thinnest animals to 2.5 cm thick in the fattest. The relative consistencies of the thickness and composition of the layers as well as the nature of the fatty acids making up each layer support the generally assumed function of the various layers: (1) the outer layer is primarily structural and thermoregulatory, (2) the inner layer is metabolically active with a fatty acid composition that is strongly affected by recent/ongoing lipid mobilization/deposition, and (3) the middle layer is a storage site that contracts and expands with food availability/consumption. The remarkable dynamics of the middle layer along with the discrete pattern of stratification found in the vertical fatty acid profiles have important implications for methodological sampling design for studies of foraging ecology and toxicology based on analyses of blubber of marine mammals.
Resumo:
O trabalho teve por objetivo caracterizar o estoque de anchoita (Engraulis anchoita) capturado na região sul do Brasil, visando à utilização deste recurso de alto valor biológico no desenvolvimento de produtos semi-prontos e de fácil preparo, tipo empanado. Os experimentos foram conduzidos com anchoita resultante de cruzeiros realizados pelo Navio Oceanográfico Atlântico Sul da Universidade Federal do Rio Grande (FURG), RS, Brasil. Os exemplares foram capturados entre a cidade de Rio Grande (32ºS, RS-Brasil) e 51ºW. Após captura, o pescado foi armazenado a bordo em mistura de gelo e água do mar, na razão 1:1. As amostras foram transportadas para o laboratório de Biotecnologia da FURG e mantidas sob congelamento a -18°C, até a realização das análises. O trabalho está constituído por uma revisão bibliográfica, que enfatiza a importância do recurso pesqueiro em estudo como potencial a ser explorado, discorre sobre ácidos graxos e perfil de voláteis, bem como, o desenvolvimento de produtos à base de pescado. O desenvolvimento do trabalho é expresso por quatro artigos. O primeiro teve como objetivo caracterizar o estoque de anchoita segundo a biometria, rendimento, composição proximal, compostos nitrogenados e ácidos graxos. O rendimento, a composição proximal e o perfil de ácidos graxos foram realizados nas três frações que compõe o peixe: músculo claro, escuro e vísceras. A análise dos resultados demonstrou a variabilidade dos componentes em função das frações avaliadas e da época de captura, o que pode contribuir para a escolha do processo tecnológico a ser aplicado no desenvolvimento de produtos de alto valor agregado a partir dessa matéria-prima. No segundo artigo foi determinado o perfil de ácidos graxos da anchoita e avaliado o comportamento destes compostos durante o armazenamento congelado, bem como, dos voláteis gerados. Os resultados demonstraram a influência do armazenamento na modificação dos ácidos graxos, em especial, EPA e DHA, e que os voláteis gerados podem ser um índice em potencial para avaliar a qualidade da anchoita congelada. No terceiro artigo objetivou-se selecionar e treinar julgadores para avaliação do odor a pescado utilizando os padrões referência obtidos a partir do perfil de voláteis. Neste sentido, foi levantada a terminologia que descreve o odor da anchoita, definido padrões referência, bem como, selecionado e treinado uma equipe de julgadores. Foram utilizados 20 candidatos, deste total, 9 foram selecionados pelo método das amplitudes. Os julgadores selecionados foram submetidos ao treinamento no uso de escala não estruturada e na avaliação da intensidade do odor a pescado. O desempenho dos julgadores foi definido utilizando como amostra solução de lavagem resultante do processo de obtenção de base protéica de anchoita. Os resultados foram avaliados com base no poder de discriminação, repetibilidade das respostas e concordância entre julgadores, segundo análise de variância, com duas fontes de variação (amostra e repetições). Foram obtidos os valores de Famostra e Frepetição, para cada julgador. Os julgadores com o valor de Famostra significativo (p≤0,30) e Frepetição não significativo (p>0,05), bem como, concordância de médias com os demais julgadores foram considerados treinados. Segundo esse processo a equipe foi constituída por 8 julgadores selecionados e treinados na avaliação do odor a pescado. Finalmente, no quarto artigo foi avaliada a possibilidade de uso de base protéica (BPP) de anchoita na elaboração de massa base de empanados, bem como, em substituição a farinha de cobertura. Para obtenção das BPPs, foram testadas duas soluções extratoras (3 ciclos de extração com ácido fosfórico 0,05% e 1 ciclo de ácido fosfórico seguido de 2 ciclos com água). A BPP obtida na melhor condição utilizada foi seca a 70°C e submetida ao processo de moagem em moinho de facas para ser utilizada como farinha de cobertura. Formulações de empanado utilizando diferentes concentrações (25, 50, 75 e 100%) de anchoita desidratada na cobertura foram testadas no produto frito e forneado. Um teste de preferência com consumidores em potencial foi aplicado às diferentes formulações. Os resultados indicaram que a melhor condição de lavagem para obtenção das BPPs testadas foi quando são utilizados 3 ciclos de extração com ácido fosfórico. A avaliação da preferência junto ao consumidor em potencial demonstrou que a anchoita desidratada pode ser utilizada como farinha de cobertura em empanados na concentração de até 75%.
Resumo:
Diante da grande quantidade de glicerol bruto gerado na síntese do biodiesel e seu baixo valor comercial, torna-se fundamental encontrar formas alternativas para converter este substrato em produtos com valor agregado. Neste contexto, este trabalho teve como objetivo avaliar diferentes leveduras oleaginosas capazes de metabolizar o glicerol bruto, gerado como coproduto na síntese de biodiesel, visando produzir biomassa como fonte de lipídios. Todos os cultivos foram realizados em frascos agitados, em condições estabelecidas de acordo com cada etapa do trabalho, sendo obtidos dados relativos ao crescimento celular e à produção de lipídios, tratados estatisticamente conforme o propósito. Lipomyces lipofer NRRL Y-1155 apresentou diferenças significativas em relação às outras leveduras oriundas de banco de cultura, atingindo 57,64% de lipídios na biomassa. Estas leveduras apresentarem perfis de ácidos graxos diferenciados, semelhantes aos dos principais óleos vegetais utilizadas na síntese de biodiesel, com predominância de ácidos graxos poli-insaturados, especialmente ácido linoleico (68,3% na levedura Rhodotorula glutinis NRRL YB-252). O ácido gama-linolênico, um ácido graxo essencial ω6, foi detectado em todas as leveduras analisadas, sendo que na biomassa de Candida cylindracea NRRL Y-17506 chegou a 23,1%. Através de um planejamento experimental Plackett-Burman, verificou-se que as variáveis concentração de extrato de levedura e de MgSO4.7H20 demonstraram maior influência na produção de lipídios por uma linhagem silvestre de Rhodotorula mucilaginosa. Para esta levedura, a partir da análise de efeitos foi possível estabelecer a seguinte condição para a produção de lipídios: 30,0 g.L-1 glicerol; 5,0 g.L-1 KH2PO4; 1,0 g.L-1 Na2HPO4; 3,0 g.L-1 MgSO4.7H2O; 1,2 g.L-1 extrato de levedura; pH inicial 4,5; temperatura 25°C. Nestas condições conseguiu-se um teor de lipídios de 59,96% e lipídios totais produzidos de 5,51 g.L-1 . Também foi possível observar aumento no teor de lipídios da biomassa ao longo do tempo de cultivo, bem como o aumento do teor relativo do ácido linoleico, que atingiu 52%. Dentre as leveduras isoladas a partir de amostras ambientais do Extremo Sul do Brasil, a levedura identificada como Cryptococcus humicola se destacou das demais, apresentando proporção de 23,5% de ácidos graxos saturados, 14,8% de ácidos graxos monoinsaturados e 54,9% de ácidos graxos poli-insaturados, destacando-se o ácido linoleico. O planejamento Plackett-Burman foi também utilizado para esta levedura, sendo que as variáveis concentração de extrato de levedura e glicerol bruto demonstraram maior influência na produção de lipídios. Posteriormente, um delineamento composto central rotacional (DCCR) foi proposto visando à otimização da produção de lipídios. Os modelos empíricos preditivos obtidos para biomassa máxima e lipídios totais permitiram estabelecer para a produção de lipídios por Cryptococcus humicola a seguinte condição otimizada: 100,0 g.L-1 glicerol; 5,0 g.L-1 KH2PO4; 1,0 g.L-1 Na2HPO4; 4,8 g.L-1 extrato de levedura; pH inicial 4,5; temperatura 25°C. Esta condição representou um incremento de cerca de 2 vezes nos lipídios totais em relação à melhor condição estabelecida pelo planejamento Plackett-Burmann e um acréscimo de cerca de 4,8 vezes em relação às condições testadas inicialmente, atingindo 37,61% de lipídios e 8,85 g.L-1 de lipídios totais. Deste modo, os propósitos de valorização de um coproduto oriundo da síntese de biodiesel, bem como a produção de um óleo com potencial para a produção de biodiesel, foram cumpridos.
Resumo:
Soil horizons below 30 cm depth contain about 60% of the organic carbon stored in soils. Although insight into the physical and chemical stabilization of soil organic matter (SUM) and into microbial community composition in these horizons is being gained, information on microbial functions of subsoil microbial communities and on associated microbially-mediated processes remains sparse. To identify possible controls on enzyme patterns, we correlated enzyme patterns with biotic and abiotic soil parameters, as well as with microbial community composition, estimated using phospholipid fatty acid profiles. Enzyme patterns (i.e. distance-matrixes calculated from these enzyme activities) were calculated from the activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase), which had been measured in soil samples from organic topsoil horizons, mineral topsoil horizons, and mineral subsoil horizons from seven ecosystems along a 1500 km latitudinal transect in Western Siberia. We found that hydrolytic enzyme activities decreased rapidly with depth, whereas oxidative enzyme activities in mineral horizons were as high as, or higher than in organic topsoil horizons. Enzyme patterns varied more strongly between ecosystems in mineral subsoil horizons than in organic topsoils. The enzyme patterns in topsoil horizons were correlated with SUM content (i.e., C and N content) and microbial community composition. In contrast, the enzyme patterns in mineral subsoil horizons were related to water content, soil pH and microbial community composition. The lack of correlation between enzyme patterns and SUM quantity in the mineral subsoils suggests that SOM chemistry, spatial separation or physical stabilization of SUM rather than SUM content might determine substrate availability for enzymatic breakdown. The correlation of microbial community composition and enzyme patterns in all horizons, suggests that microbial community composition shapes enzyme patterns and might act as a modifier for the usual dependency of decomposition rates on SUM content or C/N ratios. (C) 2015 The Authors. Published by Elsevier Ltd.
Resumo:
Antifungal compounds produced by Lactic acid bacteria (LAB) metabolites can be natural and reliable alternative for reducing fungal infections pre- and post-harvest with a multitude of additional advantages for cereal-base products. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. This thesis includes an overview of the impact fungi have on aspects of the cereal food chain. The applicability of LAB in plant protection and cereal industry is discussed in detail. Specific case studies include Fusarium head blight, and the impact of fungi in the malting and baking industry. The impact of Fusarium culmorum infected raw barley on the final malt quality was part of the investigation. In vitro infected barley grains were fully characterized. The study showed that the germinative energy of infected barley grains decreased by 45% and grains accumulated 199 μg.kg-1 of deoxynivalenol (DON). Barley grains were subsequently malted and fully characterized. Fungal biomass increased during all stages of malting. Infected malt accumulated 8-times its DON concentration during malting. Infected malt grains revealed extreme structural changes due to proteolytic, (hemi)-cellulolytic and starch degrading activity of the fungi, this led to increased friability and fragmentation. Infected grains also had higher protease and β-glucanase activities, lower amylase activity, a greater proportion of free amino and soluble nitrogen, and a lower β-glucan content. Malt loss was over 27% higher in infected malt when compared to the control. The protein compositional changes and respective enzymatic activity of infected barley and respective malt were characterized using a wide range of methods. F. culmorum infected barley grains showed an increase in proteolytic activity and protein extractability. Several metabolic proteins decreased and increased at different rates during infection and malting, showing a complex F. culmorum infection interdependence. In vitro F. culmorum infected malt was used to produce lager beer to investigate changes caused by the fungi during the brewing processes and their effect on beer quality attributes. It was found, that the wort containing infected malt had a lower pH, a higher FAN, higher β-glucan and a 45% increase in the purging rate, and led to premature yeast flocculation. The beer produced with infected malt (IB) had also a significantly different amino acid profile. IB flavour characterization revealed a higher concentration of esters, fusel alcohols, fatty acids, ketones, and dimethylsulfide, and in particular, acetaldehyde, when compared to the control. IB had a greater proportion of Strecker aldehydes and Maillard products contributing to an increased beer staling character. IB resulted in a 67% darker colour with a trend to better foam stability. It was also found that 78% of the accumulated mycotoxin deoxynivalenol in the malt was transferred into beer. A LAB cell-freesupernatant (cfs), produced in wort-base substrate, was investigated for its ability to inhibit Fusarium growth during malting. Wort was a suitable substrate for LAB exhibiting antifungal activity. Lactobacillus amylovorus DSM19280 inhibited 104 spores.mL-1 for 7 days, after 120 h of fermentation, while Lactobacillus reuteri R29 inhibited 105 spores.mL-1 for 7 days, after 48 h of fermentation. Both LAB cfs had significant different organic acid profiles. Acid-base antifungal compounds were identified and, phenyllactic, hydroxy-phenyllactic, and benzoic acids were present in higher concentrations when compared to the control. A 3 °P wort substrate inoculated With L. reuteri R29 (cfs) was applied in malting and successfully inhibited Fusarium growth by 23%, and mycotoxin DON by 80%. Malt attributes resulted in highly modified grains, lower pH, higher colouration, and higher extract yield. The implementation of selected LAB producing antifungal compounds can be used successfully in the malting process to reduce mould growth and mycotoxin production.
Resumo:
Lipids are key constituents of marine phytoplankton, and some fatty acids (key constituents of lipids) are essential dietary components for secondary producers. However, in natural marine ecosystems the interactions of factors affecting seasonal phytoplankton lipid composition are still poorly understood. The aim of this study was to assess the roles of seasonal succession in phytoplankton community composition and nutrient concentrations, on the lipid composition of the phytoplankton community. Fatty acid and polar lipid composition in seston was measured in surface waters at the time series station L4, an inshore station in the Western English Channel, from January to December 2013. Redundancy analyses (RDA) were used to identify factors (abiotic and biotic) that explained the seasonal variability in phytoplankton lipids. RDA demonstrated that nutrients (namely nitrogen) explained the majority of variation in phytoplankton lipid composition, as well as a smaller explanatory contribution from changes in phytoplankton community composition. The physiological adaptations of the phytoplankton community to nutrient deplete conditions during the summer season when the water column was stratified, was further supported by changes in the polar lipid to phytoplankton biomass ratios (also modelled with RDA) and increases in the lipid to chlorophyll a ratios, which are both indicative of nutrient stress. However, the association of key fatty acid markers with phytoplankton groups e.g. 22:6 n-3 and dinoflagellate biomass (predominant in summer), meant there were no clear seasonal differences in the overall degree of fatty acid saturation, as might have been expected from typical nutrient stress on phytoplankton. Based on the use of polyunsaturated fatty acids (PUFA) as markers of ‘food quality’ for grazers, our results suggest that in this environment high food quality is maintained throughout summer, due to seasonal succession towards flagellated phytoplankton species able to maintain PUFA synthesis under surface layer nutrient depletion.
Resumo:
The aim of this study was to determine whether any differences in the GH-IGF-I axis in juvenile calves were predictive of fertility problems as adult cows. Endogenous metabolic hormone profiles before and after feeding and the response to a GH-releasing factor (GRF) challenge were measured in prepubertal (6 month) dairy calves. These metabolic parameters were subsequently related to physical characteristics at puberty and to ovarian function during the first lactation. Milk progesterone analysis was used to categorize the animals into those with normal progesterone profiles following calving (n = 17) and those that developed delayed ovulation (DOV1, n = 9) or persistent corpus luteum (PCL1, n = 6) profiles. There were associations between prepubertal GH parameters, glucose and non-esterified fatty acid (NEFA) concentrations and the body condition score at which the animals attained puberty. The calves which subsequently developed DOV1 profiles as cows tended to have a higher GH pulse amplitude during fasting than normal profile animals, they did not show the anticipated decrease in circulating glucose concentrations following a post-prandial rise in insulin and they also had the lowest IGF-I concentrations. The calves that later developed PCL1 had a significantly larger GH pulse amplitude and pulse area than normal profile animals in the fed period and had the highest IGF-I concentrations. There were no differences in prepubertal insulin or NEFA concentrations or in the GH response to a GRF challenge between the different progesterone profile categories. Plasma IGF-I concentrations in prepubertal animals were positively correlated with their post-calving concentrations, whereas glucose concentrations had a negative correlation between these time-periods. These results suggested that the different juvenile endocrine profiles of the DOV1 cows may predispose them to a higher rate of tissue mobilization during lactation and a consequent reduction in fertility, while altered GH and IGF-I levels in PCL1 cows may later contribute to the maintenance of the persistent corpus luteum. Therefore metabolic differences in prepubertal calves were later reflected by altered reproductive function during the first lactation.
Resumo:
Recent studies have illustrated the effects of cis-9, trans-11 conjugated linoleic acid (CLA) on human health. Ruminant-derived meat, milk and dairy products are the predominant sources of cis-9, trans-11 CLA in the human diet. This study evaluated the processing properties, texture, storage characteristics, and organoleptic properties of UHT milk, Caerphilly cheese, and butter produced from a milk enriched to a level of cis-9, trans-11 CLA that has been shown to have biological effects in humans. Forty-nine early-lactation Holstein-British Friesian cows were fed total mixed rations containing 0 (control) or 45 g/kg ( on dry matter basis) of a mixture (1:2 wt/wt) of fish oil and sunflower oil during two consecutive 7-d periods to produce a control and CLA-enhanced milk, respectively. Milk produced from cows fed the control and fish and sunflower oil diets contained 0.54 and 4.68 g of total CLA/100 g of fatty acids, respectively. Enrichment of CLA in raw milk from the fish and sunflower oil diet was also accompanied by substantial increases in trans C18:1 levels, lowered C18: 0, cis-C18:1, and total saturated fatty acid concentrations, and small increases in n-3 polyunsaturated fatty acid content. The CLA-enriched milk was used for the manufacture of UHT milk, butter, and cheese. Both the CLA-enhanced butter and cheese were less firm than control products. Although the sensory profiles of the CLA-enriched milk, butter, and cheese differed from those of the control products with respect to some attributes, the overall impression and flavor did not differ. In conclusion, it is feasible to produce CLA-enriched dairy products with acceptable storage and sensory characteristics.
Resumo:
We have investigated the contribution of muscle components to the development of cooked meat odour in an aqueous model system using trained taste panels. Reaction mixtures were prepared with oleic, linoleic and linolenic acids with or without cysteine and ribose in a buffer with or without ferrous sulphate. Odour profiles were assessed and triangular tests were used to determine the ability of panellists to discriminate between mixtures. The presence of sugar and amino acid was highly detectable by panellists independently of the fatty acid considered (P < 0.001). However, the presence of C18:3 made differences. more obvious between mixtures than the presence of C18:1 or C18:2. `Meaty' notes were only associated with cysteine and ribose. `Fishy' notes were only apparent in C18:3 mixtures with or without sugar and amino acid, although the presence of cysteine and ribose decreased the perception. The addition of Fe+ +, a pro-oxidant present in the muscle, produced a reduction in the score of the attributes although the pattern was the same as when Fe was not used in the mixtures. Only `fishy' notes that were exclusively perceived in C18:3 mixtures showed a higher score in the presence of iron. Iron also produced a better discrimination in C18:3 mixtures, which were closely related to `grassy' notes in the presence of cysteine and ribose. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Current intakes of very long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are low in most individuals living in Western countries. A good natural source of these fatty acids is seafood, especially oily fish. Fish oil capsules contain these fatty acids also. Very long-chain omega-3 fatty acids are readily incorporated from capsules into transport (blood lipids), functional (cell and tissue), and storage (adipose) pools. This incorporation is dose-dependent and follows a kinetic pattern that is characteristic for each pool. At sufficient levels of incorporation, EPA and DHA influence the physical nature of cell membranes and membrane protein-mediated responses, lipid-mediator generation, cell signaling, and gene expression in many different cell types. Through these mechanisms, EPA and DHA influence cell and tissue physiology and the way cells and tissues respond to external signals. In most cases the effects seen are compatible with improvements in disease biomarker profiles or health-related outcomes. As a result, very long-chain omega-3 fatty acids play a role in achieving optimal health and in protection against disease. Long-chain omega-3 fatty acids not only protect against cardiovascular morbidity but also against mortality. In some conditions, for example rheumatoid arthritis, they may be beneficial as therapeutic agents. On the basis of the recognized health improvements brought about by long-chain omega-3 fatty acids, recommendations have been made to increase their intake. The plant omega-3 fatty acid, alpha-linolenic acid (ALA), can be converted to EPA, but conversion to DHA appears to be poor in humans. Effects of ALA on human health-related outcomes appear to be due to conversion to EPA, and since this is limited, moderately increased consumption of ALA may be of little benefit in improving health outcomes compared with increased intake of preformed EPA + DHA.
Resumo:
OBJECTIVE: the aim of this study was to determine the effects of diets rich in saturated and polyunsaturated fatty acids on metabolic pathways and the relation of metabolic shifting to oxidative stress in cardiac tissue.METHODS: Male Wistar rats (age, 60 d; n = 10) were fed with a control low-fat diet, a diet rich in saturated fatty acids (SFAs), or a diet rich in polyunsaturated fatty acids (PUFAs). After 5 wk of treatment, sera were used for protein and lipid determinations. Protein, glycogen, triacylglycerol, lactate dehydrogenase, citrate synthase, beta-hydroxyacyl coenzyme-A dehydrogenase, catalase, glutathione peroxidase, superoxide dismutase, lipoperoxide, and lipid hydroperoxide were measured in cardiac tissue.RESULTS: the SFA group had higher triacylglycerol, cholesterol, low-density lipoprotein cholesterol, and atherogenic index (ratio of cholesterol to high-density lipoprotein) than did the PUFA and control groups. The PUFA group had low serum cholesterol, triacylglycerol, and low-density lipoprotein cholesterol as compared with the SFA group. SFA increased myocardial lipid hydroperoxide and diminished glutathione peroxidase. Despite the beneficial effects on serum lipids, the PUFA diet led to the highest levels of myocardial lipoperoxide and lipid hydroperoxide and diminished superoxide dismutase and catalase activities. The PUFA effects were related to increased feed efficiency, increased susceptibility to lipoperoxidation, and metabolic shifting in cardiac tissue. PUFA elevated triacylglycerol levels and decreased myocardial glycogen concentrations. The ratios of lactate dehydrogenase to citrate synthase and beta-hydroxyacyl coenzyme-A dehydrogenase to citrate synthase were increased, indicating myocardial reduction of tricarboxylic acid cycle.CONCLUSIONS: PUFAs have been recommended as a therapeutic measure in preventive medicine to lower serum cholesterol, but PUFAs increased oxidative stress in the heart by providing cardiac susceptibility to lipoperoxidation and shifting the metabolic pathway for energy production. The control diet, which was much lower in calories and fat, produced better overall clinical outcomes, better fat profiles, and less oxidative stress than did the diets rich in fatty acids.
Resumo:
Patients with type 2 diabetes mellitus (T2DM) exhibit insulin resistance associated with obesity and inflammatory response, besides an increased level of oxidative DNA damage as a consequence of the hyperglycemic condition and the generation of reactive oxygen species (ROS). In order to provide information on the mechanisms involved in the pathophysiology of T2DM, we analyzed the transcriptional expression patterns exhibited by peripheral blood mononuclear cells (PBMCs) from patients with T2DM compared to non-diabetic subjects, by investigating several biological processes: inflammatory and immune responses, responses to oxidative stress and hypoxia, fatty acid processing, and DNA repair. PBMCs were obtained from 20 T2DM patients and eight non-diabetic subjects. Total RNA was hybridized to Agilent whole human genome 4x44K one-color oligo-microarray. Microarray data were analyzed using the GeneSpring GX 11.0 software (Agilent). We used BRB-ArrayTools software (gene set analysis - GSA) to investigate significant gene sets and the Genomica tool to study a possible influence of clinical features on gene expression profiles. We showed that PBMCs from T2DM patients presented significant changes in gene expression, exhibiting 1320 differentially expressed genes compared to the control group. A great number of genes were involved in biological processes implicated in the pathogenesis of T2DM. Among the genes with high fold-change values, the up-regulated ones were associated with fatty acid metabolism and protection against lipid-induced oxidative stress, while the down-regulated ones were implicated in the suppression of pro-inflammatory cytokines production and DNA repair. Moreover, we identified two significant signaling pathways: adipocytokine, related to insulin resistance; and ceramide, related to oxidative stress and induction of apoptosis. In addition, expression profiles were not influenced by patient features, such as age, gender, obesity, pre/post-menopause age, neuropathy, glycemia, and HbA(1c) percentage. Hence, by studying expression profiles of PBMCs, we provided quantitative and qualitative differences and similarities between T2DM patients and non-diabetic individuals, contributing with new perspectives for a better understanding of the disease. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Hidden for the untrained eye through a thin layer of sand, laminated microbial sediments occur in supratidal beaches along the North Sea coast. The inhabiting microbial communities organize themselves in response to vertical gradients of light, oxygen or sulfur compounds. We performed a fine-scale investigation on the vertical zonation of the microbial communities using a lipid biomarker approach, and assessed the biogeochemical processes using a combination of microsensor measurements and a 13C-labeling experiment. Lipid biomarker fingerprinting showed the overarching importance of cyanobacteria and diatoms in these systems, and heterocyst glycolipids revealed the presence of diazotrophic cyanobacteria even in 9 to 20 mm depth. High abundance of ornithine lipids (OL) throughout the system may derive from sulfate reducing bacteria, while a characteristic OL profile between 5 and 8 mm may indicate presence of purple non-sulfur bacteria. The fate of 13C-labeled bicarbonate was followed by experimentally investigating the uptake into microbial lipids, revealing an overarching importance of cyanobacteria for carbon fixation. However, in deeper layers, uptake into purple sulfur bacteria was evident, and a close microbial coupling could be shown by uptake of label into lipids of sulfate reducing bacteria in the deepest layer. Microsensor measurements in sediment cores collected at a later time point revealed the same general pattern as the biomarker analysis and the labeling experiments. Oxygen and pH-microsensor profiles showed active photosynthesis in the top layer. The sulfide that diffuses from deeper down and decreases just below the layer of active oxygenic photosynthesis indicates the presence of sulfur bacteria, like anoxygenic phototrophs that use sulfide instead of water for photosynthesis.
Resumo:
Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon into bacterial biomass is indicated by carbon isotope values of specific fatty acids as low as -103 per mill. Specific fatty acids released from bacterial membranes include C 16:1 omega 5c , C 17:1 omega 6c , and cyC 17:0 omega 5,6 , all of which have been fully characterized by mass spectrometry. These unusual fatty acids continuously display the lowest d13 C values in all sediment horizons and two of them are detected in high abundance (i.e., C 16:1 omega 5c and cyC 17:0 omega 5,6 ). Combined with microscopic examination by fluorescence in situ hybridization specifically targeting sulfate-reducing bacteria (SRB) of the Desulfosarcina/Desulfococcus group, which are present in the aggregates of AOM consortia in extremely high numbers, these specific fatty acids appear to provide a phenotypic fingerprint indicative for SRB of this group. Correlating depth profiles of specific fatty acid content and aggregate number in combination with pore water sulfate data provide further evidence of this finding. Using mass balance calculations we present a cell-specific fatty acid pattern most likely displaying a very close resemblance to the still uncultured Desulfosarcina/Desulfococcus species involved in AOM.
Resumo:
Fatty acid and alcohol profiles and stable nitrogen and carbon isotope values, d15N and d13C, of Calanus finmarchicus CV were studied in June 2004 to estimate their trophic status along the northern Mid-Atlantic Ridge i.e. the Reykjanes Ridge (RR), extending from Iceland in the north to the productive region of the Sub-Polar Front (SPF) in the south. Two main groups of stations were defined in the study area based on fatty acid (FA) and fatty alcohol compositions, the stations in the RR area constituted one group and the stations in the frontal area constituted another. The sum of relative amounts of the dietary FAs was significantly higher in the RR area than in the frontal area. Conversely, the long-chained FAs, 20:1 and 22:1, were found in significantly lower relative amounts in the RR area than in the frontal area, thus indicating later ascent of the animals in the frontal area. Further support of this is provided by the fatty alcohols ratio 20:1/22:1 which differed significantly between the two areas. The d15N values were significantly higher in the frontal area compared to the RR area indicating higher trophic position and/or different pelagic-POM baseline in these areas.