953 resultados para FUNGAL PATHOGEN
Resumo:
Fusarium moniliforme causa sérios prejuízos no rendimento do milho. Suspeita-se que a entrada do fungo na cariopse ocorra pela cicatriz do estilete, e que este fato e o nível de infestação por F. moniliforme estejam relacionados com características morfológicas da cariopse. O objetivo deste trabalho foi identificar características morfológicas que conferem resistência a F. moniliforme em cariopses de milho. Cariopses de seis linhagens de milho, com e sem inoculação do patógeno, foram avaliadas utilizando-se de estereomicroscópio e o microscópio eletrônico de varredura. Características morfológicas da cariopse, tais como: tegumento com saliências e reentrâncias acentuadas, pericarpo pouco espesso, amido menos compacto e presença do canal estilar favorecem a penetração de F. moniliforme.
Resumo:
A mancha de mirotécio causada por Myrothecium roridum Tode ex Fr. foi observada em lavouras de algodão no sul do Maranhão, causando reduções de produtividade de até 60%. Os sintomas da doença são lesões necróticas, circulares, com estruturas salientes, os esporodóquios, de distribuição irregular. Foram observadas lesões nos pecíolos, brácteas, folhas e maçãs de algodoeiro cv. Deltapine Acala 90, Fibermax 966 e Sure Grow 821. O isolamento do fungo foi realizado em meio de cultura batata-dextrose-ágar (BDA). O teste de patogenicidade foi realizado em maçãs sadias, destacadas de algodoeiro cv. Fibermax 966, no estádio vegetativo R6, previamente desinfestadas. Foram testados 13 isolados de M. roridum, oito provenientes de algodão e cinco de soja. Avaliações das estruturas fúngicas foram realizadas com auxílio de microscópio óptico equipado com um micrômetro ocular. Os isolados causaram infecções em maçãs de algodão e destacou-se como mais agressivo o MA-75, proveniente de algodão, apresentando diâmetro médio de lesão de 1,3cm, aos sete DAI e 2,7cm aos 14 DAI. Todos os isolados formaram esporodóquios dispostos concenticamente em meio BDA. Os conídios são unicelulares, hialinos a oliváceos, abundantemente produzidos em massa verde-oliva a preta. Os conídios de isolados provenientes de algodão mediram, em média, 5,1µm x 1,5µm, e os obtidos de soja, 5,8µm x 1,5µm. Estes resultados relatam a ocorrência da mancha de mirotécio, causada por M. roridum, em lavouras comerciais de algodão no Brasil.
Resumo:
É relatado um caso de encefalite piogranulomatosa em um cão fêmea de um ano de idade, da raça Fila Brasileiro. Ao exame macroscópico do cérebro, evidenciou-se área amolecida e hemorrágica no córtex frontal direito e na superfície de corte do hemisfério esquerdo, afetando a substância branca e áreas corticais profundas. O diagnóstico de encefalite piogranulomatosa micótica multifocal foi realizado através de exame histopatológico, que mostrou a presença de macrófagos, células gigantes, focos de hemorragia e hifas septadas de coloração marrom, com distribuição difusa e invadindo a luz de vasos. A identificação de formas amastigotas no imprint de linfonodo poplíteo confirmou o diagnóstico de leishmaniose. A infecção micótica no cérebro deste cão foi relacionada com a ocorrência concomitante de leishmaniose, uma doença imunossupressora.
Resumo:
A rapid, sensitive and reliable reverse-phase HPLC method was used for the quantitative determination of the anti-fungal and insecticide amides, dihydropiplartine (1), piplartine (2), Delta(alpha,beta)-dihydropiperine (3) and pellitorine (4) in plants in natura, in plantlets in vitro and ex vitro, and in callus of Piper tuberculatum. Well-resolved peaks were obtained with good detection response and linearity in the range of 15.0-3000 mug/mL. The plants in natura contained compounds 1-4, the plantlets ex vitro and in vitro accumulated compounds 1-2 and 1-4, respectively, while only amide 4 was found in callus. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Extracellular matrix protein laminin binds specifically to yeast forms of Paracoccidioides brasiliensis and enhances adhesion of the fungus to the surface of epithelial Madin-Darby canine kidney cells in vitro. Immunoblotting of fungal extracts showed that the gp43 glycoprotein is responsible for adhesion. This was confirmed by binding assays using purified gp43, with a K-d of 3.7 nM. The coating of P. brasiliensis yeast forms with laminin before injection into hamster testicles enhanced the fungus virulence, resulting in a faster and more severe granulomatous disease. These results indicate that interaction of fungi with extracellular matrix elements may constitute a basis for the evolution of fungal infection toward regional spreading and dissemination.
Resumo:
Leaves of Piper aduncum accumulate the anti-fungal chromenes methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate (1) and methyl 2,2-dimethyl-8-(3'-methyl-2'-butenyl)-2H-1-chromene-6-carboxylate (2). The enzymatic formation of 2 from dimethylallyl diphosphate and I was investigated using cell-free extracts of the title plant. An HPLC assay for the prenylation reaction was developed and the enzyme activity measured in the protein extracts. The prenyltransferase that catalyses the transfer of the dimethylallyl group to C-2' of 1 was soluble and required dimethylallyl diphosphate as the prenyl donor. In the leaves, the biosynthesis of the prenylated chromene 2 was time-regulated and prenyltransferase activity depended upon circadian variation. Preliminary characterisation and purification experiments on the prenyltransferase from P. aduncum have been performed. Copyright (C) 2005 John Wiley & Sons, Ltd.
Resumo:
This review provides an overview of several molecular and cellular approaches that are likely to supply insights into the host-fungus interaction. Fungi present intra- and/or extracellular host-parasite interfaces, the parasitism phenomenon being dependent on complementary surface molecules. The entry of the pathogen into the host cell is initiated by the fungus adhering to the cell surface, which generates an uptake signal that may induce its cytoplasmatic internalization. Furthermore, microbial pathogens use a variety of their surface molecules to bind to host extracellular matrix (ECM) components to establish an effective infection. on the other hand, integrins mediate the tight adhesion of cells to the ECM at sites referred to as focal adhesions and also play a role in cell signaling. The phosphorylation process is an important mechanism of cell signaling and regulation; it has been implicated recently in defense strategies against a variety of pathogens that alter host-signaling pathways in order to facilitate their invasion and survival within host cells. The study of signal transduction pathways in virulent fungi is especially important in view of their putative role in the regulation of pathogenicity. This review discusses fungal adherence, changes in cytoskeletal organization and signal transduction in relation to host-fungus interaction. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The pathogenic fungus Paracoccidioides brasiliensis causes paracoccidioidomycosis, a pulmonary mycosis acquired by inhalation of fungal airborne propagules, which may disseminate to several organs and tissues, leading to a severe form of the disease. Adhesion to and invasion of host cells are essential steps involved in the infection and dissemination of pathogens. Furthermore, pathogens use their surface molecules to bind to host extracellular matrix components to establish infection. Here, we report the characterization of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of P. brasiliensis as an adhesin, which can be related to fungus adhesion and invasion. The P. brasiliensis GAPDH was overexpressed in Escherichia coli, and polyclonal antibody against this protein was obtained. By immunoelectron microscopy and Western blot analysis, GAPDH was detected in the cytoplasm and the cell wall of the yeast phase of P. brasiliensis. The recombinant GAPDH was found to bind to fibronectin, laminin, and type I collagen in ligand far-Western blot assays. of special note, the treatment of P. brasiliensis yeast cells with anti-GAPDH polyclonal antibody and the incubation of pneumocytes with the recombinant protein promoted inhibition of adherence and internalization of P. brasiliensis to those in vitro-cultured cells. These observations indicate that the cell wall-associated form of the GAPDH in P. brasiliensis could be involved in mediating binding of fungal cells to fibronectin, type I collagen, and laminin, thus contributing to the adhesion of the microorganism to host tissues and to the dissemination of infection.
Resumo:
Using simulated ceramic refuse chambers, field decomposition studies were performed on the spent fungal refuse of the lead-cutting ant Atta sexdens rubropilosa. Refuse half life was estimated at 40 days, with complete decomposition at 100 days. These results suggest that the conversion-factor method used to estimate forage input into leaf-cutting ant colonies must be corrected for decomposition, or serious estimation errors will occur.
Resumo:
The surface glycoprotein gp43, a highly immunogenic component of Paracoccidioides brasiliensis, is used in the serodiagnosis of paracoccidioidomycosis (PCM) and has recently been shown to specifically bind the extracellular matrix protein laminin, Binding to laminin induces the increased adhesion of the fungus to epithelial cells; a hamster testicle infection model has shown that the gp43-dependent binding of fungal cells to laminin enhances their pathogenicity in vivo. We report on the production and characterization of 12 monoclonal antibodies against the gp43 that recognize peptide sequences in the molecule detecting at least three different epitopes as well as different isoforms of this antigen. MAbs interfered in the fungal pathogenicity in vivo either by inhibiting or enhancing granuloma formation and tissue destruction, Results suggest that P. brasiliensis propagules may start infection in man by strongly adhering to human lung cells, Thus, laminin-mediated fungal adhesion to human lung carcinoma (A549) cells was much more intense than to Madin-Darby canine kidney cells (MDCK), indicating differences in binding affinity, Subsequent growth of fungi bound to the lung cells could induce the granulomatous inflammatory reaction characteristic of PCM. Both steps are greatly stimulated by laminin binding in infective cells expressing gp43.
Resumo:
Paracoccidioides brasiliensis causes infection by the host inhalation of airborne propagules of the mycelia phase of the fungus. These particles reach the lungs, and disseminate to virtually all organs. Here we describe the identification of differentially expressed genes in studies of host-fungus interaction. We analyzed two cDNA populations of P. brasiliensis, one obtained from infected animals and the other an admixture of fungus and human blood thus mimicking the hematologic events of the fungal dissemination. Our analysis identified transcripts differentially expressed. Genes related to iron acquisition, melanin synthesis and cell defense were specially upregulated in the mouse model of infection. The upregulated transcripts of yeast cells during incubation with human blood were those predominantly related to cell wall remodeling/synthesis. The expression pattern of genes was independently confirmed in host conditions, revealing their potential role in the infection process. This work can facilitate functional studies of novel regulated genes that may be important for the survival and growth strategies of P. brasiliensis in humans. (c) 2006 Elsevier Masson SAS. All rights reserved.
Resumo:
Corn starch, partially hydrolyzed by fungal alpha-amylase was investigated by using thermal analysis, microscopy and X-ray diffraction. After enzymatic treatment lower degradation onset temperatures were observed. DSC analysis showed almost similar range of gelatinization temperature, however, the enthalpies of gelatinization increased for the partially hydrolyzed starch granules. According to the X-ray diffraction analysis, stronger cereal pattern peaks were recognized after enzymatic digestion. The results suggested that the hydrolysis was more pronounced in the amorphous part of the starch granules.
Resumo:
Xylella fastidiosa is a phytopathogen that causes diseases in different plant species. The development of disease symptoms is associated to the blockage of the xylem vessels caused by biofilm formation. In this study, we evaluated the sensitivity of biofilm and planktonic cells to copper, one of the most important antimicrobial agents used in agriculture. We measured the exopolysaccharides (EPS) content in biofilm and planktonic cells and used real-time reverse transcription polymerase chain reaction to evaluate the expression of the genes encoding proteins involved in cation/multidrug extrusion (acrA/B, mexE/czcA, and metI) and others associated with different copper resistance mechanisms (copB, cutA1, cutA2, and cutC) in the X. fastidiosa biofilm formed in two different media. We confirmed that biofilms are less susceptible to copper than planktonic cells. The amount of EPS seems to be directly related to the resistance and it varies according to the media where the cells are grown. The same was observed for gene expression. Nevertheless, some genes seem to have a greater importance in biofilm cells resistance to copper. Our results suggest a synergistic effect between diffusion barriers and other mechanisms associated with bacterial resistance in this phytopathogen. These mechanisms are important for a bacterium that is constantly under stress conditions in the host.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)