974 resultados para FH-77BW L52 Archer -tykistöasejärjestelmä


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Convenio Específico, en el marco del Convenio de Cooperación Universidades Nacionales del Norte Grande Argentino (Resolución CS N° 024/03) para la realización de actividades conjuntas entre FHyCS-UNaM y "FH-UNNE", en las áreas de Ciencias de la Información y de Tecnologías informáticas aplicadas a la Documentación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are investigating the late Holocene rise in CO2 by performing four experiments with the climate-carbon-cycle model CLIMBER2-LPJ. Apart from the deep sea sediments, important carbon cycle processes considered are carbon uptake or release by the vegetation, carbon uptake by peatlands, and CO 2 release due to shallow water sedimentation of CaCO3. Ice core data of atmospheric CO2 between 8 ka BP and preindustrial climate can only be reproduced if CO2 outgassing due to shallow water sedimentation of CaCO3 is considered. In this case the model displays an increase of nearly 20 ppmv CO2 between 8 ka BP and present day. Model configurations that do not contain this forcing show a slight decrease in atmospheric CO2. We can therefore explain the late Holocene rise in CO2 by invoking natural forcing factors only, and anthropogenic forcing is not required to understand preindustrial CO2 dynamics.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations of carbonate preservation in marine sediments have long been used to infer changes in ocean circulation or biogenic production. When combined with measures of organic carbon rain and calcite accumulation rates, quantitative estimates of changes in preservation can reveal variation in biogenic fluxes, the org. C to calcite flux ratio and saturation state of bottom waters. Here we develop quantitative dissolution proxies for mid to higher latitudes based on foraminiferal test fragmentation. Examining surface sediments, we find that fragmentation in G. bulloides and G. truncatulinoides is linear with increasing seabed dissolution rate and can be used to quantify changes in carbonate preservation. G. truncatulinoides shows a constant relationship of fragmentation to dissolution. However, we observe that, although linear to dissolution rate, the fragmentation in G. bulloides depends on which morphotype is present. Other species, such as G. inflata, have complex responses to increasing dissolution and are less direct preservation indicators.