978 resultados para FETAL HEART RATE
Resumo:
Background: In view of conflicting neuroimaging results regarding autonomic-specific activity within the anterior cingulate cortex (ACC), we investigated autonomic responses to direct brain stimulation during sterecitactic limbic surgery. Methods: Skin conductance activity and accelerative heart rate responses to multi-voltage stimulation of the ACC (n = 7) and paralimbic subcauclate (n = 5) regions were recorded during bilateral anterior cingulotomy and bilateral subcauclate tractotomy (in patients that had previously received an adequate lesion in the ACC), respectively. Results: Stimulations in both groups were accompanied by increased autonomic arousal. Skin conductance activity was significantly increased during ACC stimulations compared with paralimbic targets at 2 V (2.34 +/- .68 [score in microSiemens +/- SE] vs. .34 +/- .09, p = .013) and 3 V (3.52 +/- .86 vs. 1.12 +/- .37, p = .036), exhibiting a strong ""voltage-response"" relationship between stimulus magnitude and response amplitude (difference from 1 to 3 V = 1.15 +/- .90 vs. 3.52 +/- .86, p = .041). Heart rate response was less indicative of between-group differences. Conclusions: This is the first study of its kind aiming at seeking novel insights into the mechanisms responsible for central autonomic modulation. It supports a concept that interregional interactions account for the coordination of autonomic arousal.
Resumo:
Objectives The present study investigates the hemodynamic and autonomic regulation during sleep-awake transitions and across different sleep cycles in patients with essential hypertension. Methods Nineteen individuals free of sleep apnea (10 normotensive and nine hypertensive matched for age, sex, and body mass index) underwent a standard polysomnography, with simultaneous electrocardiography and beat-to-beat blood pressure monitoring (Portapres). All measurements were determined while awake (before and after sleep), as well as in the beginning and at end of the sleep cycle (first/last cycle of nonrapid and rapid eye movement stages). Results Systolic blood pressure was higher in hypertensives and exhibited a similar reduction to the normotensives ones in initial nonrapid eye movement sleep. This reduction was because of different mechanisms: a significant fall in cardiac output in normotensives, whereas in hypertensives was also dependent of a decrease in peripheral vascular resistance. Hypertensive patients presented lower heart rate variation and attenuated baroreflex sensitivity during sleep but not immediately before and after sleep. Spectral analysis suggested a higher sympathetic activity in the sleep stages in hypertension. Additionally, a progressive sympathetic predominance (final rapid eye movement> initial rapid eye movement and awake period postsleep> awake period presleep) was observed in both groups. Conclusion Hypertension is associated with depressed baroreflex sensitivity and increased sympathetic activation during sleep. The greater sympathetic predominance at the end of night (preceding the morning surge of sympathetic activity) could be implicated in the occurrence of cardiovascular events. J Hypertens 27: 1655-1663 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Background: Selective serotonin reuptake inhibitors (SSRIs) are first-line treatments for posttraumatic stress disorder (PTSD). Serotonergic (5HT) attenuation of stress sensitivity is postulated from SSRIs` effects in other anxiety disorders, and we studied this in PTSD. Methods: Ten patients with PTSD fully recovered on SSRIs (Clinical Global Impression Scale-I 1 and 2) were enrolled in the study. Patients were tested on two occasions I week apart; in each session, they received a drink containing large neutral amino acids (LNAAs) either with (sham tryptophan depletion [STD], control) or without (acute tryptophan depletion [ATD]) tryptophan. At 5.5 hours after the drink, subjects were exposed to a trauma-related exposure challenge. Self-reports of PTSD (visual analogue scales [VAS] and the Davidson Trauma Scale [DTSI), anxiety (Spielberger State Inventory [STAI] Form Y-1), and mood (Profile of Mood States [POMS]) were obtained. Heart rate (HR), systolic (SBP) and diastolic (DBP) blood pressure were also measured. Results: The trauma-related exposure challenge induced anxiety on both days, with more marked responses on the ATD day according to VAS, DTS, POMS, and DBP (p < .05). A trend of significance (.1 > p >.05) was observed for STAI Form Y-1, HR, and SBP. Conclusions: These data demonstrate that ATD accentuates responses to trauma-related stimuli in SSRI-recovered PTSD. They also suggest that SSRI-induced increases in serotonin function restrain PTSD symptoms, especially under provocation, supporting a role for serotonin in mediating stress resilience.
Resumo:
Objective: Biofuel from sugarcane is widely produced in developing countries and is a clean and renewable alternative source of energy. However, sugarcane harvesting is mostly performed after biomass burning. The aim of this study was to evaluate the effects of harvesting after biomass burning on nasal mucociliary clearance and the nasal mucus properties of farm workers. Methods: Twenty seven sugarcane workers (21-45 years old) were evaluated at the end of two successive time-periods: first at the end of a 6-month harvesting period (harvesting), and then at the end of a 3-month period without harvesting (non-harvesting). Nasal mucociliary clearance was evaluated by the saccharine transit test, and mucus properties were analyzed using in vitro mucus contact angle and mucus transportability by sneeze. Arterial blood pressure, heart rate, respiratory rate, pulse oximetry, body temperature, associated illness, and exhaled carbon monoxide were registered. Results: Data are presented as mean values (95% confidence interval). The multivariate model analysis adjusted for age, body-mass index, smoking status and years of working with this agricultural practice showed that harvesting yielded prolonged saccharine transit test in 7.83 min (1.88-13.78), increased mucus contact angle in 8.68 degrees (3.18-14.17) and decreased transportability by sneeze in 32.12 mm (-44.83 to -19.42) compared with the non-harvesting period. No significant differences were detected in any of the clinical parameter at either time-period. Conclusion: Sugarcane harvesting after biomass burning negatively affects the first barrier of the respiratory system in farm workers by impairing nasal mucociliary clearance and inducing abnormal mucus properties. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Emerging data reveal that oral estrogen therapy can increase clinic blood pressure (BP) in postmenopausal women; however, it is important to establish its effects on ambulatory BP, which is a better predictor for target-organ damage. Besides estrogen therapy, aerobic training is widely recommended for post-menopausal women, and it can decrease ambulatory BP levels. This study was designed to evaluate the effect of aerobic training and estrogen therapy on the ambulatory BP of post-menopausal women. Forty seven healthy hysterectomized women were randomly divided (in a double-blind manner) into 4 groups: placebo-control (PLA-CO = 12), estrogen therapy-control (ET-CO = 14), placebo-aerobic training (PLA-AT = 12), and estrogen therapy-aerobic training (ET-AT = 09). The ET groups received estradiol valerate (1 mg/day) and the AT groups performed cycle ergometer, 3x/week at moderate intensity. Hormonal status (blood analysis), maximal cardiopulmonary exercise test (VO(2) peak) and ambulatory BP (24-h, daytime and nighttime) was evaluated before and 6 months after interventions. A significant increase in VO(2) peak was observed only in women who participated in aerobic training groups (+4.6 +/- 1.0 ml kg(-1) min(-1), P=0.00). Follicle-stimulating hormone was a significant decreased in the ET groups (-18.65 +/- 5.19 pg/ml, P=0.00), and it was accompanied by an increase in circulating estrogen (56.1 +/- 6.6 pg/ml). A significant increase was observed in the ET groups for daytime (P=0.01) and nighttime systolic BP (P=0.01), as well as nighttime diastolic BP (P = 0.02). However, daytime diastolic BP was increased only in the ET-CO group (+3.4 +/- 1.2 mmHg, P=0.04), and did not change in any other groups. No significant effect was found in ambulatory heart rate. In conclusion, aerobic training abolished the increase of daytime ambulatory BP induced by estrogen therapy in hysterectomized, healthy, normotensive and postmenopausal women. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Introduction. This study addressed the role of the local renin-angiotensin system (RAS) in the left ventriular hypertropy (LVH) induced by swimming training using pharmacological blockade. Materials and methods. Female Wistar rats treated with enalapril maleate (60 mg.kg(-1).d(-1), n = 38), losartan (20 mg.kg(-1).d(-1), n = 36) or high salt diet (1% NaCl, n = 38) were trained by two protocols (T1: 60-min swimming session, 5 days per week for 10 weeks and T2: the same T1 protocol until the 8(th) week, then 9(th) week they trained twice a day and 10(th) week they trained three times a day). Salt loading prevented activation of the systemic RAS. Haemodynamic parameters, soleus citrate synthase (SCS) activity and LVH (left ventricular/body weight ratio, mg/g) were evaluated. Results. Resting heart rate decreased in all trained groups. SCS activity increased 41% and 106% in T1 and T2 groups, respectively. LVH was 20% and 30% in T1 and T2 groups, respectively. Enalapril prevented 39% of the LVH in T2 group (p < 0.05). Losartan prevented 41% in T1 and 50% in T2 (P < 0.05) of the LVH in trained groups. Plasma renin activity (PRA) was inhibited in all salt groups and it was increased in T2 group. Conclusions. These data provide evidence that the physiological LVH induced by swimming training is regulated by local RAS independent from the systemic, because the hypertrophic response was maintained even when PRA was inhibited by chronic salt loading. However, other systems can contribute to this process.
Resumo:
Background: Organs from the so-called marginal donors have been used with a significant higher risk of primary non function than organs retrieved from the optimal donors. We investigated the early metabolic changes and blood flow redistribution in splanchnic territory in an experimental model that mimics marginal brain-dead (BD) donor. Material/Methods: Ten dogs (21.3 +/- 0.9 kg), were subjected to a brain death protocol induced by subdural balloon inflation and observed for 30 min thereafter without ally additional interventions. Mean arterial and intracranial pressures, heart rate, cardiac output (CO), portal vein and hepatic artery blood flows (PVBF and HABF, ultrasonic flowprobe), and O(2)-derived variables were evaluated. Results: An increase in arterial pressure, CO, PVBF and HABF was observed after BD induction. At the end, an intense hypotension with normalization in CO (3.0 +/- 0.2 VS. 2.8 +/- 2.8 L/min) and PVBF (687 +/- 114 vs. 623 +/- 130 ml/min) was observed, whereas HABF (277 33 vs. 134 28 ml/min, p<0.005) remained lower than baseline values. Conclusions: Despite severe hypotension induced by sudden increase of intracranial pressure, the systemic and splanchnic blood flows were partially preserved without signs of severe hypoperfusion (i.e. hyperlactatemia). Additionally, the HABF was mostly negatively affected in this model of marginal BD donor. Our data suggest that not only the cardiac output, but the intrinsic hepatic microcirculatory mechanism plays a role in the hepatic blood flow control after BD.
Resumo:
The aim of this study was to determine whether estrogen therapy enhances postexercise muscle sympathetic nerve activity (MSNA) decrease and vasodilation, resulting in a greater postexercise hypotension. Eighteen postmenopausal women received oral estrogen therapy (ET; n = 9, 1 mg/day) or placebo (n = 9) for 6 mo. They then participated in one 45-min exercise session (cycle ergometer at 50% of oxygen uptake peak) and one 45-min control session (seated rest) in random order. Blood pressure (BP, oscillometry), heart rate (HR), MSNA (microneurography), forearm blood flow (FBF, plethysmography), and forearm vascular resistance (FVR) were measured 60 min later. FVR was calculated. Data were analyzed using a two-way ANOVA. Although postexercise physiological responses were unaltered, HR was significantly lower in the ET group than in the placebo group (59 +/- 2 vs. 71 +/- 2 beats/min, P < 0.01). In both groups, exercise produced significant decreases in systolic BP (145 +/- 3 vs. 154 +/- 3 mmHg, P = 0.01), diastolic BP (71 +/- 3 vs. 75 +/- 2 mmHg, P = 0.04), mean BP (89 +/- 2 vs. 93 +/- 2 mmHg, P = 0.02), MSNA (29 +/- 2 vs. 35 +/- 1 bursts/min, P < 0.01), and FVR (33 +/- 4 vs. 55 +/- 10 units, P = 0.01), whereas it increased FBF (2.7 +/- 0.4 vs. 1.6 +/- 0.2 ml (.) min(-1) (.) 100 ml(-1), P = 0.02) and did not change HR (64 +/- 2 vs. 65 +/- 2 beats/min, P = 0.3). Although ET did not change postexercise BP, HR, MSNA, FBF, or FVR responses, it reduced absolute HR values at baseline and after exercise.
Resumo:
The biomechanics of the sacroiliac joint makes the pelvic segment responsible for proper weight distribution between lower extremities; however, it is known to be susceptible to altered mobility. The objective of this study was to analyze baropodometric responses following thrust manipulation on subjects with sacroiliac joint restrictions. Twenty asymptomatic subjects were submitted to computerized baropodometric analysis before, after, and seven days following sacroiliac manipulation. The variables peak pressure and contact area were obtained at each of these periods as the average of absolute values of the difference between the right and left foot based on three trials. Data revealed significant reduction only in peak pressure immediately after manipulation and at follow-up when compared to pre-manipulative values (p < 0.05). Strong correlation was found between the dominant foot and the foot with greater contact area (r - 0.978), as well as between the side of joint restriction and the foot with greater contact area (r = 0.884). Weak correlation was observed between the dominant foot and the foot with greater peak pressure (r = 0.501), as well as between the side of joint restriction and the foot with greater peak pressure (r = 0.694). The results suggest that sacroiliac joint manipulation can influence peak pressure distribution between feet, but contact area does not seem to be related to the biomechanical aspects addressed in this study. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The present study has investigated in conscious rats the influence of the duration of physical training sessions on cardiac autonomic adaptations by using different approaches; 1) double blockade with methylatropine and propranolol; 2) the baroreflex sensitivity evaluated by alternating bolus injections of phenylephrine and sodium nitroprusside; and 3) the autonomic modulation of HRV in the frequency domain by means of spectral analysis. The animals were divided into four groups: one sedentary group and three training groups submitted to physical exercise (swimming) for 15, 30, and 60 min a day during 10 weeks. All training groups showed similar reduction in intrinsic heart rate (IHR) after double blockade with methylatropine and propranolol. However, only 30-min and 60-min physical training presented an increase in the vagal autonomic component for determination of basal heart rate (HR) in relation to group sedentary. Spectral analysis of HR showed that the 30-min and 60-min physical training presented the reduction in low-frequency oscillations (LF = 0.20-0.75 Hz) and the increase in high-frequency oscillations (HF = 0.75-2.5 Hz) in normalized units. These both groups only showed an increased baroreflex sensitivity to tachycardiac responses in relation to group sedentary, however when compared, the physical training of 30-min exhibited a greater gain. In conclusion, cardiac autonomic adaptations, characterised by the increased predominance of the vagal autonomic component, were not proportional to the duration of daily physical training sessions. In fact, 30-minute training sessions provided similar cardiac autonomic adaptations, or even more enhanced ones, as in the case of baroreflex sensitivity compared to 60-minute training sessions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We studied the acute effect of intracranial hypertension (ICH) on gastric tonus of anesthetized rats. Brain ventricles were cannulated bilaterally for intracerebro-ventricular pressure (ICP) monitoring and ICH induction. Next, a balloon catheter was inserted at the proximal stomach and coupled to a barostat for gastric volume (GV) monitoring by plethysmography. Arterial pressure (AP) and heart rate (HR) were monitored continuously during 80-min. After a 20-min basal period, they were submitted to control or ICH protocols. In controls, the ICP varied spontaneously up to the end. Other rats were subjected to ICP rising to 10, 20, 40 or 60 mmHg and kept at these levels for 30-min. Another group was subjected after basal period to stepwise ICH (ICP rising to 20, 40 and 60 mmHg at every 10-min interval). Next, the ICH rats were monitored for further 30-min. Other rats, previously submitted to a subdiaphragmatic vagotomy, splanchnicectomy plus ganglionectomy or their respective sham surgery, were also studied under ICH. Each subset consisted of 5-6 rats. Data were compared to respective basal values after ANOVA and Bonferroni`s test. In controls, the CV, AP, HR values remained within stable levels. Besides inducing bradycardia and arterial hypertension, ICH10 mmHg decreased GV by 14.8% at the 50-min interval. In ICH20, 40 and 60 mmHg subsets, GV decreased 14.0, 24.5 and 30.6% at the 40-min interval, respectively. In stepwise ICH rats, GV decreased 10.2% and 12.7%, respectively under ICP of 40 and 60 mmHg. The GV values remained significantly lower than basal levels during the last 30-min of monitoring. Thus, ICH decreases the GV in an ICP-dependent pattern besides inducing Cushing`s reflex. (C) 2008 Published by Elsevier B.V.
Resumo:
We report on the cardiovascular effects of L-glutamate (L-glu) microinjection into the hypothalamic paraventricular nucleus (PVN) as well as the mechanisms involved in their mediation. L-glu microinjection into the PVN caused dose-related pressor and tachycardiac responses in unanesthetized rats. These responses were blocked by intravenous (i.v.) pretreatment with the ganglion blocker pentolinium (PE; 5 mg/kg), suggesting sympathetic mediation. Responses to L-glu were not affected by local microinjection of the selective non-NMDA receptor antagonist NBQX (2 nmol) or by local microinjection of the selective NMDA receptor antagonist LY235959 (LY; 2 nmol). However, the tachycardiac response was changed to a bradycardiac response after treatment with LY235959, suggesting that NMDA receptors are involved in the L-glu heart rate response. Local pretreatment with LY235959 associated with systemic PE or dTyr(CH(2))(5)(Me)AVP (50 mu g/kg) respectively potentiated or blocked the response to L-glu, suggesting that L-glu responses observed after LY235959 are vasopressin mediated. The increased pressor and bradycardiac responses observed after LY + PE was blocked by subsequent i.v. treatment with the V(1)-vasopressin receptor antagonist dTyr(CH(2))(5)(Me)AVP, suggesting vasopressin mediation. The pressor and bradycardiac response to L-glu microinjection into the PVN observed in animals pretreated with LY + PE was progressively inhibited and even blocked by additional pretreatment with increasing doses of NBQX (2, 10, and 20 nmol) microinjected into the PVN, suggesting its mediation by local non-NMDA receptors. In conclusion, results suggest the existence of two glutamatergic pressor pathways in the PVN: one sympathetic pathway that is mediated by NMDA receptors and a vasopressinergic pathway that is mediated by non-NMDA receptors. (C) 2009 Wiley-Liss, Inc.
Resumo:
The medial amygdaloid nucleus (MeA) modulates several physiological and behavioral processes and among them, the cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint evokes cardiovascular responses, which are characterized by both elevated blood pressure (BP) and intense heart rate (HR) increase. We presently report effects of MeA pharmacological manipulations on BP and HR responses evoked by acute restraint in rats. Bilateral microinjection of 100 nL of the unspecific synaptic blocker COCl(2) (1 mM) into the MeA increased HR response to acute restraint, without significant effect on the BP response. This result indicates an inhibitory influence of MeA on restraint-evoked HR changes. Injections of the non-selective muscarinic receptor antagonist atropine (3 nmol); the inhibitor of choline uptake hemicholinium (2 nmol) or the selective M(1)-receptor antagonist pirenzepine (6 nmol) caused effects that were similar to those caused by cobalt. These results suggest that local cholinergic neurotransmission and M(1)-receptors mediate the MeA inhibitory influence on restraint-related HR responses. Pretreatment with the M3 receptor antagonist 4-DAMP (4-Diphenylacetoxy-N-methylpiperidine methiodide-2 nmol) did not affect restraint-related cardiovascular responses, reinforcing the idea that M(1)-receptors mediate MeA-related inhibitory influence on restraint-evoked HR increase. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
We report on the cardiovascular effects of noradrenaline (NA) microinjection into the hypothalamic supraoptic nucleus (SON) as well as the central and peripheral mechanisms involved in their mediation. Microinjections of NA 1, 3, 10, 30 or 45 nmol/100 nL into the SON caused dose-related pressor and bradycardiac response in unanesthetized rats. The response to NA 10 nmol was blocked by SON pretreatment with 15 nmol of the alpha(2)-adrenoceptor antagonist RX821002 and not affected by pretreatment with equimolar dose of the selective alpha(1)-adrenoceptor antagonist WB4101, suggesting that local alpha(2)adrenoceptors mediate these responses. Pretreatment of the SON with the nonselective beta-adrenoceptor antagonist propranolol 15 nmol did not affect the pressor response to NA microinjection of into the SON. Moreover, the microinjection of the 100 nmol of the selective alpha(1)-adrenoceptor agonist methoxamine (MET) into the SON did not cause cardiovascular response while the microinjection of the selective alpha(2)adrenoceptor agonists BHT920 (BHT, 100 nmol) or clonidine (CLO, 5 nmol) caused pressor and bradycardiac responses, similar to that observed after the microinjection of NA. The pressor response to NA was potentiated by intravenous pretreatment with the ganglion blocker pentolinium and was blocked by intravenous pretreatment with the V(1)-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP, suggesting an involvement of circulating vasopressin in this response. In conclusion, our results suggest that pressor responses caused by microinjections of NA into the SON involve activation of local alpha(2)-adrenoceptor receptors and are mediated by vasopressin release into circulation. (c) 2008 Published by Elsevier B.V.
Resumo:
The paraventricular nucleus of the hypothalamus (PVN) has been implicated in several aspects of cardiovascular control. Stimulation of the PVN evokes changes in blood pressure and heart rate. Additionally, this brain area is connected to several limbic structures implicated in behavioral control, as well as to forebrain and brainstem structures involved in cardiovascular control. This evidence indicates that the PVN may modulate cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint is an unavoidable stressor that evokes marked and sustained cardiovascular changes, which are characterized by elevated mean arterial pressure (MAP) and an intense heart rate (HR) increase. We report on the effect of inhibition of PVN synapses on MAP and HR responses evoked by acute restraint in rats. Bilateral microinjection of the nonspecific synaptic blocker cobalt (CoCl2, 1mM/100nl) into the PVN did not change the HR response or the initial peak of the MAP response to restraint stress, but reduced the area under the curve of the MAP response. Moreover, bilateral microinjection of cobalt in areas surrounding the PVN did not change the cardiovascular response to restraint. These results indicate that synapses in the PVN are involved in the neural pathway that controls blood pressure changes evoked by restraint.