948 resultados para Excretion.
Resumo:
The objective of the study was to evaluate the cost and environmental impact of replacing traditional corn, which is the main ingredient in poultry diets, with a high-oil corn (HOC) variety. Using linear programming, diets were formulated with either traditional corn or HOC. The results indicate that HOC-based diets cost up to $11.38/tonne less than traditional corn-based diets. Using HOC rather than traditional corn in diets has the potential to reduce the annual nitrogen excreted to the environment from broilers and broiler breeders in Brazil by 6.44 Mtonnes. In addition, there is the potential to reduce P excretion by 4.52 Mtonnes/yr, because the need to supplement diets with inorganic P sources, such as dicalcium phosphate, is much lower with HOC-based diets. We estimate that 28.5 Mtonnes of dicalcium phosphate can be saved annually using HOC in Brazilian poultry diets. The literature suggests that replacing traditional corn with HOC does not affect bird metabolism, while positive impacts on growth rate have been recorded. Therefore, substituting traditional corn with HOC has cost and environmental benefits for the Brazilian poultry industry without compromising productivity.
Resumo:
Two experiments were undertaken in which grass silage was used in conjunction with a series of different concentrate types designed to examine the effect of carbohydrate source, protein level and degradability on total dietary phosphorus (P) utilization with emphasis on P pollution. Twelve Holstein-Friesian dairy cows in early to mid-lactation were used in an incomplete changeover design with four periods consisting of 4 weeks each. Phosphorus intake ranged from 54 to 80 g/day and faecal P represented the principal route by which ingested P was disposed of by cows, with insignificant amounts being voided in urine. A positive linear relationship between faecal P and P intake was established. In Experiment 1, P utilization was affected by dietary carbohydrate type, with an associated output of 3.3 g faecal P/g milk P produced for all treatments except those utilizing low degradable starch and low protein supplements, where a mean value of 2.8 g faecal P/g milk P was observed. In Experiment 2, where two protein levels and three protein degradabilities were examined, the efficiency of P utilization for milk P production was not affected by either level or degradability of crude protein (CP) but a significant reduction in faecal P excretion due to lower protein and P intake was observed. In general, P utilization in Experiment 2 was substantially improved compared to the Experiment 1, with an associated output of 1.8 g faecal P/g milk P produced. The improved utilization of P in Experiment 2 could be due to lower P content of the diets offered and higher dry matter (DM) intake. For dairy cows weighing 600 kg, consuming 17-18 kg DM/day and producing about 25 kg milk, P excretion in faeces and hence P pollution to the environment might be minimized without compromising lactational performance by formulating diets to supply about 68 g P/day, which is close to recent published recommended requirements for P.
Resumo:
In the past decade, a number of mechanistic, dynamic simulation models of several components of the dairy production system have become available. However their use has been limited due to the detailed technical knowledge and special software required to run them, and the lack of compatibility between models in predicting various metabolic processes in the animal. The first objective of the current study was to integrate the dynamic models of [Brit. J. Nutr. 72 (1994) 679] on rumen function, [J. Anim. Sci. 79 (2001) 1584] on methane production, [J. Anim. Sci. 80 (2002) 2481 on N partition, and a new model of P partition. The second objective was to construct a decision support system to analyse nutrient partition between animal and environment. The integrated model combines key environmental pollutants such as N, P and methane within a nutrient-based feed evaluation system. The model was run under different scenarios and the sensitivity of various parameters analysed. A comparison of predictions from the integrated model with the original simulation models showed an improvement in N excretion since the integrated model uses the dynamic model of [Brit. J. Nutr. 72 (1994) 6791 to predict microbial N, which was not represented in detail in the original model. The integrated model can be used to investigate the degree to which production and environmental objectives are antagonistic, and it may help to explain and understand the complex mechanisms involved at the ruminal and metabolic levels. A part of the integrated model outputs were the forms of N and P in excreta and methane, which can be used as indices of environmental pollution. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
The extensive development of the ruminant forestomach sets apart their N economy from that of nonruminants in a number of respects. Extensive pregastric fermentation alters the profile of protein reaching the small intestine, largely through the transformation of nitrogenous compounds into microbial protein. This process is fueled primarily by carbohydrate fermentation and includes extensive recycling of N between the body and gut lumen pools. Nitrogen recycling occurs via blood and gut lumen exchanges of urea and NH3, as well as endogenous gut and secretory N entry into the gut lumen, and the subsequent digestion and absorption of microbial and endogenous protein. Factors controlling urea transfer to the gut from blood, including the contributions of urea transporters, remain equivocal. Ammonia produced by microbial degradation of urea and dietary and endogenous AA is utilized by microbial fermentation or absorbed and primarily converted to urea. Therefore, microbial growth and carbohydrate fermentation affect the extent of NH3 absorption and urea N recycling and excretion. The extensive recycling of N to the rumen represents an evolutionary advantage of the ruminant in terms of absorbable protein supply during periods of dietary protein deficiency, or asynchronous carbohydrate and protein supply, but incurs a cost of greater N intakes, especially in terms of excess N excretion. Efforts to improve the efficiency of N utilization in ruminants by synchronizing fermentable energy and N availability have generally met with limited success with regards to production responses. In contrast, imposing asynchrony through oscillating dietary protein concentration, or infrequent supplementation, surprisingly has not negatively affected production responses unless the frequency of supplementation is less than once every 3 d. In some cases, oscillation of dietary protein concentration has improved N retention compared with animals fed an equal amount of dietary protein on a daily basis. This may reflect benefits of Orn cycle adaptations and sustained recycling of urea to the gut. The microbial symbiosis of the ruminant is inherently adaptable to asynchronous N and energy supply. Recycling of urea to the gut buffers the effect of irregular dietary N supply such that intuitive benefits of rumen synchrony in terms of the efficiency of N utilization are typically not observed in practice.
Resumo:
Background: Intravenous infusions of glucose and amino acids increase both nitrogen balance and muscle accretion. We hypothesised that co-infusion of glucose ( to stimulate insulin) and essential amino acids (EAA) would act additively to improve nitrogen balance by decreasing muscle protein degradation in association with alterations in muscle expression of components of the ubiquitin-proteasome proteolytic pathway. Methods: We examined the effect of a 5 day intravenous infusions of saline, glucose, EAA and glucose + EAA, on urinary nitrogen excretion and muscle protein degradation. We carried out the study in 6 restrained calves since ruminants offer the advantage that muscle protein degradation can be assessed by excretion of 3 methyl-histidine and multiple muscle biopsies can be taken from the same animal. On the final day of infusion blood samples were taken for hormone and metabolite measurement and muscle biopsies for expression of ubiquitin, the 14-kDa E2 ubiquitin conjugating enzyme, and proteasome sub-units C2 and C8. Results: On day 5 of glucose infusion, plasma glucose, insulin and IGF-1 concentrations were increased while urea nitrogen excretion and myofibrillar protein degradation was decreased. Co-infusion of glucose + EAA prevented the loss of urinary nitrogen observed with EAA infusions alone and enhanced the increase in plasma IGF-1 concentration but there was no synergistic effect of glucose + EAA on the decrease in myofibrillar protein degradation. Muscle mRNA expression of the ubiquitin conjugating enzyme, 14-kDa E2 and proteasome sub-unit C2 were significantly decreased, after glucose but not amino acid infusions, and there was no further response to the combined infusions of glucose + EAA. Conclusion: Prolonged glucose infusion decreases myofibrillar protein degradation, prevents the excretion of infused EAA, and acts additively with EAA to increase plasma IGF-1 and improve net nitrogen balance. There was no evidence of synergistic effects between glucose + EAA infusion on muscle protein degradation or expression of components of the ubiquitin-proteasome proteolytic pathway.
Resumo:
A comparison of the models of Vitti et al. (2000, J. Anim. Sci. 78, 2706-2712) and Fernandez (1995c, Livest. Prod. Sci. 41, 255-261) was carried out using two data sets on growing pigs as input. The two models compared were based on similar basic principles, although their aims and calculations differed. The Vitti model employs the rate:state formalism and describes phosphorus (P) flow between four pools representing P content in gut, blood, bone and soft tissue in growing goats. The Fernandez model describes flow and fractional recirculation between P pools in gut, blood and bone in growing pigs. The results from both models showed similar trends for P absorption from gut to blood and net retention in bone with increasing P intake, with the exception of the 65 kg results from Date Set 2 calculated using the FernAndez model. Endogenous loss from blood back to gut increased faster with increasing P intake in the FernAndez than in the Vitti model for Data Set 1. However, for Data Set 2, endogenous loss increased with increasing P intake using the Vitti model, but decreased when calculated using the FernAndez model. Incorporation of P into bone was not influenced by intake in the FernAndez model, while in the Vitti model there was an increasing trend. The FernAndez model produced a pattern of decreasing resorption in bone with increasing P intake, with one of the data sets, which was not observed when using the Vitti model. The pigs maintained their P homeostasis in blood by regulation of P excretion in urine. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND: The widespread occurrence of feminized male fish downstream of some wastewater treatment works has led to substantial interest from ecologists and public health professionals. This concern stems from the view that the effects observed have a parallel in humans, and that both phenomena are caused by exposure to mixtures of contaminants that interfere with reproductive development. The evidence for a "wildlife-human connection" is, however, weak: Testicular dysgenesis syndrome, seen in human males, is most easily reproduced in rodent models by exposure to mixtures of antiandrogenic chemicals. In contrast, the accepted explanation for feminization of wild male fish is that it results mainly from exposure to steroidal estrogens originating primarily from human excretion. OBJECTIVES: We sought to further explore the hypothesis that endocrine disruption in fish is multi-causal, resulting from exposure to mixtures of chemicals with both estrogenic and antiandrogenic properties. METHODS: We used hierarchical generalized linear and generalized additive statistical modeling to explore the associations between modeled concentrations and activities of estrogenic and antiandrogenic chemicals in 30 U.K. rivers and feminized responses seen in wild fish living in these rivers. RESULTS: In addition to the estrogenic substances, antiandrogenic activity was prevalent in almost all treated sewage effluents tested. Further, the results of the modeling demonstrated that feminizing effects in wild fish could be best modeled as a function of their predicted exposure to both anti-androgens and estrogens or to antiandrogens alone. CONCLUSION: The results provide a strong argument for a multicausal etiology of widespread feminization of wild fish in U.K. rivers involving contributions from both steroidal estrogens and xeno-estrogens and from other (as yet unknown) contaminants with antiandrogenic properties. These results may add farther credence to the hypothesis that endocrine-disrupting effects seen in wild fish and in humans are caused by similar combinations of endocrine-disrupting chemical cocktails.
Resumo:
Myzus persicae (Sulzer) was reared continuously for over thirty years (until it died out in December 2008) on a totally defined synthetic artificial diet, the procedure for which is described. Development time was extended on diet compared with rearing on Brussels sprout plants (Brassica oleracea L. var. gemmifera L.), and generation time was further increased by an added pre-reproductive period of 4 days. Fecundity was reduced by about two-thirds, and mean relative growth rate in weight (MRGR) was only 60% in comparison with plant-reared aphids. Applying 2 kg/cm(2) pressure to a 10% sucrose solution extended the adult longevity of Aphis fabae Scopoli by less than I day. In contrast, a short experience of half-strength diet Caused a sharp rise in honeydew excretion by A. fabae for several hours, and alternating full-strength diet with diluted diets (including water) Caused a greater weight increase. The poor performance of aphids on diet thus seems to have a behavioural rather than a mechanical explanation. The diet, designed to give optimal performance of the aphids, has proved not to be useful for nutritional studies, as any change is deleterious. Areas of aphid research where the diet has been useful, however, are studies on repellents/attractants/toxins, role of symbionts, maintenance of genotype collections, work on parasitoid behaviour in relation to plant chemistry, and collection of aphid saliva.
Resumo:
Published data on the bioavailability of various Mg preparations is too fragmented and scanty to inform proper choice of Mg preparation for. clinical studies. In this study, the relative bioavailability of three preparations of Mg (amino-acid chelate, citrate and oxide) were compared at a daily dose of 300 mg of elemental Mg in 46 healthy individuals. The study was a randomised, double-blind, placebo-controlled, parallel intervention, of 60 days duration. Urine, blood and saliva samples were taken at baseline, 24 h after the first Mg supplement was taken ('acute' supplementation) and after 60 days of daily Mg consumption ('chronic' supplementation). Results showed that supplementation of the organic forms of Mg (citrate and amino-acid chelate) showed greater absorption (P = 0.033) at 60 days than MgO, as assessed by the 24-h urinary Mg excretion. Mg citrate led to the greatest mean serum Mg concentration compared with other treatments following both acute (P = 0.026) and chronic (P = 0.006) supplementation. Furthermore, although mean erythrocyte Mg concentration showed no differences among groups, chronic Mg citrate supplementation resulted in the greatest (P = 0.027) mean salivary Mg concentration compared with all other treatments. Mg oxide supplementation resulted in no differences compared to placebo. We conclude that a daily supplementation with Mg citrate shows superior bioavailability after 60 days of treatment when compared with other treatments studied.
Resumo:
Epidemiological studies have suggested an inverse correlation between red wine consumption and the incidence of CVD. However, Champagne wine has not been fully investigated for its cardioprotective potential. In order to assess whether acute and moderate Champagne wine consumption is capable of modulating vascular function, we performed a randomised, placebo-controlled, cross-over intervention trial. We show that consumption of Champagne wine, but not a control matched for alcohol, carbohydrate and fruit-derived acid content, induced an acute change in endothelium-independent vasodilatation at 4 and 8 h post-consumption. Although both Champagne wine and the control also induced an increase in endothelium-dependent vascular reactivity at 4 h, there was no significant difference between the vascular effects induced by Champagne or the control at any time point. These effects were accompanied by an acute decrease in the concentration of matrix metalloproteinase (MMP-9), a significant decrease in plasma levels of oxidising species and an increase in urinary excretion of a number of phenolic metabolites. In particular, the mean total excretion of hippuric acid, protocatechuic acid and isoferulic acid were all significantly greater following the Champagne wine intervention compared with the control intervention. Our data suggest that a daily moderate consumption of Champagne wine may improve vascular performance via the delivery of phenolic constituents capable of improving NO bioavailability and reducing matrix metalloproteinase activity.
Resumo:
The breakdown of glucosinolates, a group of thioglucoside compounds found in cruciferous plants, is catalysed by dietary or microbial myrosinase. This hydrolysis releases a range of breakdown products among which are the isothiocyanates, which have been implicated in the cancer-protective effects of cruciferous vegetables. The respective involvement of plant myrosinase and gut bacterial myrosinase in the conversion, in vivo, of glucosinolates into isothiocyanates was investigated in sixteen Fischer 344 rats. Glucosinolate hydrolysis in gnotobiotic rats harbouring a whole human faecal flora (Flora+) was compared with that in germ-free rats (Flora-). Rats were offered a diet where plant myrosinase was either active (Myro+) or inactive (Myro-). The conversion of prop-2-enyl glucosinolate and benzyl glucosinolate to their related isothiocyanates, allyl isothiocyanate and benzyl isothiocyanate, was estimated using urinary mercapturic acids, which are endproducts of isothiocyanate metabolism. The highest excretion of urinary mercapturic acids was found when only plant myrosinase was active (Flora-, Myro+ treatment). Lower excretion was observed when both plant and microbial myrosinases were active (Flora+, Myro+ treatment). Excretion of urinary mercapturic acids when only microbial myrosinase was active (Flora+, Myro- treatment) was low and comparable with the levels in the absence of myrosinase (Flora-, Myro- treatment). No intact glucosinolates were detected in the faeces of rats from the Flora+ treatments confirming the strong capacity of the microflora to break down glucosinolates. The results confirm that plant myrosinase can catalyse substantial release of isothiocyanates in vivo. The results also suggest that the human microflora may, in some circumstances, reduce the proportion of isothiocyanates available for intestinal absorption.
Resumo:
We have compared the biokinetics of deuterated natural (RPR) and synthetic (all rac) alpha-tocopherol in male apoE4-carrying smokers and nonsmokers. In a randomized, crossover study subjects underwent two 4-week treatments (400 mg/day) with undeuterated RRR- and all rac-alpha-tocopheryl acetate around a 12-week washout. Before and after each supplementation period subjects underwent a biokinetic protocol (48 h) with 150 mg deuterated RRR- or all rac-alpha-tocopheryl acetate. During the biokinetic protocols, the elimination of endogenous plasma alpha-tocopherol was significantly faster in smokers (P < 0.05). However, smokers had a lower uptake of deuterated RRR than nonsmokers, but there was no difference in uptake of deuterated all rac. The supplementation regimes significantly raised plasma alpha-tocopherol (P < 0.001) with no differences in response between smokers and nonsmokers or between alpha-tocopherol forms. Smokers had significantly lower excretion of alpha-carboxyethyl-hydroxychroman than nonsmokers following supplementation (P < 0.05). Nonsmokers excreted more alpha-carboxyethyl-hydroxychroman following RRR than all rac; however, smokers did not differ in excretion between forms. At baseline, smokers had significantly lower ascorbate (P < 0.01) and higher F(2-)isoprostarres (P < 0.05). F-2-isoprostanes in smokers remained unchanged during the study, but increased in nonsmokers following alpha-tocopherol supplementation. These data suggest that apoE4-carrying smokers and nonsmokers differ in their handling of natural and synthetic alpha-tocopherol. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
An evaluation of milk urea nitrogen (MUN) as a diagnostic of protein feeding in dairy cows was performed using mean treatment data (n = 306) from 50 production trials conducted in Finland (n = 48) and Sweden (n = 2). Data were used to assess the effects of diet composition and certain animal characteristics on MUN and to derive relationships between MUN and the efficiency of N utilization for milk production and urinary N excretion. Relationships were developed using regression analysis based on either models of fixed factors or using mixed models that account for between-experiment variations. Dietary crude protein (CP) content was the best single predictor of MUN and accounted for proportionately 0.778 of total variance [ MUN (mg/dL) = -14.2 + 0.17 x dietary CP content (g/kg dry matter)]. The proportion of variation explained by this relationship increased to 0.952 when a mixed model including the random effects of study was used, but both the intercept and slope remained unchanged. Use of rumen degradable CP concentration in excess of predicted requirements, or the ratio of dietary CP to metabolizable energy as single predictors, did not explain more of the variation in MUN (R-2 = 0.767 or 0.778, respectively) than dietary CP content. Inclusion of other dietary factors with dietary CP content in bivariate models resulted in only marginally better predictions of MUN (R-2 = 0.785 to 0.804). Closer relationships existed between MUN and dietary factors when nutrients (CP to metabolizable energy) were expressed as concentrations in the diet, rather than absolute intakes. Furthermore, both MUN and MUN secretion (g/d) provided more accurate predictions of urinary N excretion (R-2 = 0.787 and 0.835, respectively) than measurements of the efficiency of N utilization for milk production (R-2 = 0.769). It is concluded that dietary CP content is the most important nutritional factor influencing MUN, and that measurements of MUN can be utilized as a diagnostic of protein feeding in the dairy cow and used to predict urinary N excretion.
Resumo:
This paper provides an overview of analytical techniques used to determine isoflavones (IFs) in foods and biological fluids with main emphasis on sample preparation methods. Factors influencing the content of IFs in food including processing and natural variability are summarized and an insight into IF databases is given. Comparisons of dietary intake of IFs in Asian and Western populations, in special subgroups like vegetarians, vegans, and infants are made and our knowledge on their absorption, distribution, metabolism, and excretion by the human body is presented. The influences of the gut microflora, age, gender, background diet, food matrix, and the chemical nature of the IFs on the metabolism of IFs are described. Potential mechanisms by which IFs may exert their actions are reviewed, and genetic polymorphism as determinants of biological response to soy IFs is discussed. The effects of IFs on a range of health outcomes including atherosclerosis, breast, intestinal, and prostate cancers, menopausal symptoms, bone health, and cognition are reviewed on the basis of the available in vitro, in vivo animal and human data.
Resumo:
Ingestion of probiotics can be recommended as a preventative approach to maintaining intestinal microflora balance and thereby enhance 'well-being'. Undoubtedly, probiotic bacteria will vary in their efficacy. The literature indicates positive results in over 50 human trials with prevention/treatment of infections the most frequently reported. In theory increased levels of probiotics may induce a 'barrier' influence against common pathogens. Mechanisms of effect are likely to include the excretion of acids (lactate, acetate), competition for nutrients and gut receptor sites, immuno-modulation and the formation of specific antimicrobial agents. An alternative, or additional, approach is the prebiotic concept. This takes the view that probiotics are present indigenous to the gut and that a rational approach towards increasing their numbers would be to consume food ingredients (carbohydrates) that have a selective metabolism in the lower gut. A prebiotic is 'a nondigestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon that can improve the host health.' In particular, the ingestion of fructo-oligosaccharides, galacto-oligosaccharides, and lactulose has shown to stimulate bifidobacteria in the lower gut.