940 resultados para Ethanol adsorption
Resumo:
Laurencia terpenoid extract (LET) had been extracted from the red alga Laurencia tristicha. The study is to investigate the effects of LET supplementation on DNA oxidation and alkylation damages in mice. Forty healthy kunming mice weighing between 18g and 25g were randomly assigned into 4 groups, each consisting of ten animals. The mice were orally intubated respectively for 60 days with the designed concentrations of LET (25, 50, 100 mg/kg b.w.) for three exposed groups and salad oil (0.2 ml) for the blank group. Food and water were free for the animals. Mice in the blank and exposed groups were sacrificed after the last treatment and the blood of each animal was quickly taken for further experiments. The spontaneous and oxidized DNA damages of peripheral lymphocytes induced by H2O2 were analysed by SCGE. O-6-Methy-guanine (O-6-MeG) was measured by high performance capillary zone electrophoresis. There was no significantly difference in DNA spontaneous damage on peripheral lymphocytes of all the mice. The oxidative DNA damage in the 50 mg/Kg body weight supplement group are 286AU with the oxidation of 10 mu mol/L H2O2, significantly lower than the blank group 332AU (p<0.05). The contents of O-6-MeG in plasma in the 50mg/kg b.w. and 100mg/kg b.w. supplement group were 1.50 mu mol/L andl.88 mu mol/L, significantly lower than that of the blank group, which was 2.89 mu mol/L(p<0.05). The results from the present study indicated that the LET were rich in terpenoids and safety to be taken orally and it could improve antioxidative and decrease DNA damage effectively.
Resumo:
In this work, a thiourea-modified chitosan derivative (TMCD) was synthesized through two steps, O-carboxymethylated first and then modified by a polymeric Schiff's base of thiourea/glutaraldehyde. The adsorption behavior of mercury (II) ions onto TMCD was investigated through batch method. The maximum adsorption capacity for Hg(II) was found to be 6.29 mmol/g at pH 5.0 and both kinetic and thermodynamic parameters of the adsorption process were obtained. The results indicated that adsorption process was spontaneous exothermic reaction and kinetically followed pseudo-second-order model. The adsorption experiments also demonstrated TMCD had high adsorption selectivity towards Hg(II) ions when coexisted with Cu(II), Zn(II), Cd(II) and Ca(II) in solution and it could be easily regenerated and efficiently reused. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A newly synthesized benzoic-triazole derivative 3,5-dimethylbenzoic acid [1,2,4]triazol-l-ylmethyl ester (DBT) was investigated as a corrosion inhibitor of mild steel in 1 M HCl solution using weight loss measurements, potentiodynamic polarization, SEM, and EIS methods. The results revealed that DBT was an excellent inhibitor, and the inhibition efficiencies obtained from weight loss and electrochemical experiments were in good agreement. Using the potentiodynamic polarization technique, the inhibitor was proved to have a mixed-type character for mild steel by suppressing both anodic and cathodic reactions on the metal surface. The number of water molecules (X) replaced by a molecule of organic adsorbate was determined from the Flory-Huggins, Dhar-Flory-Huggins, and Bockris-Swinkels substitutional adsorption isotherms applied to the data obtained from the gravimetric experiments performed on a mild steel specimen in 1 M HCl solution at 298 K.
Resumo:
The relationship between microbial colonization of two kinds of passive metals and ennobling of their corrosion potentials (E-corr) were studied. Two types of passive metal coupons were exposed to natural seawater for about ten days. Under laboratory conditions, all corrosion potentials of the samples ennobled for about 200 mV. Epifluorescence microscopy showed that bacteria adsorption was the main process during about the first day immersion and bacteria reproduced in the following days. The bacteria number increased on the metal surface according to an exponential law and the kinetics of bacteria adsorption at the metal surface during this period was proposed. The ennoblement of E-corr was similar to the increasing bacteria number: E-corr increased quickly during the bacteria adsorption process and increased slowly after biofilms had formed.
Resumo:
Three triazole derivatives (4-chloro-acetophenone-O-1'-(1',3',4'-triazolyl)-metheneoxime (CATM), 4-methoxyl-acetophenone-O-1'-(1',3',4'-triazolyl)-metheneoxime (MATM) and 4-fluoro-acetophenone-O-1'-(1',3',4'-triazolyl)-metheneoxime (FATM)) have been synthesized as new inhibitors for the corrosion of mild steel in acid media. The inhibition efficiencies of these inhibitors were evaluated by means of weight loss and electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and polarization curves. Then the surface morphology was studied by scanning electron microscopy (SEM). The adsorption of triazole derivatives is found to obey Langmuir adsorption isotherm, and the thermodynamic parameters were determined and discussed. The relationship between molecular structure of these compounds and their inhibition efficiency has been investigated by ab initio quantum chemical calculations. The electronic properties such as the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) energy levels, energy gap (LUMO-HOMO), dipole moment and molecular orbital densities were computed. (c) 2007 Elsevier Ltd. All rights reserved.
Theoretical investigation on the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111) surface
Resumo:
In this paper, the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111) surface were investigated by using cluster (Gaussian 03) and periodic (DMol(3)) ab initio calculations. Si(111) surface was described with cluster models (Si14H17 and Si22H21) and a four-silicon layer slab with periodic boundary conditions. The effect of basis set superposition error (BSSE) was taken into account by applying the counterpoise correction. The calculated results indicated that the binding energies between hydrated Ag+ cations and clean Si(111) surface are large, suggesting a strong interaction between hydrated Ag+ cations and the semiconductor surface. With the increase of number, water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Ag+ cation. The Ag+ cation in aqueous solution will safely attach to the clean Si(111) surface.
Resumo:
To model the adsorption of Na+ in aqueous solution on the semiconductor surface, the interactions of Na+ and Na+(H2O)(n) (n = 1-6) with a clean Si(111) surface were investigated by using hybrid density functional theory (B3LYP) and Moller-Plesset second-order perturbation (MP2) methods. The Si(111) surface was described with Si8H12, Si16H20, and Si22H21 Cluster models. The effect of the basis set superposition error (BSSE) was taken into account by applying the counterpoise (CP) correction. The calculated results indicated that the interactions between the Na+ cation and the dangling bonds of the Si(111) surface are primarily electrostatic with partial orbital interactions. The magnitude of the binding energies depends weakly on the adsorption sites and the size of the clusters. When water molecules are present, the interaction between the Nal and Si(I 11) surfaces weakens and the binding energy has the tendency to saturate. On a Si22H21 cluster described surface, the optimized Na+-surface distance for Na+(H2O)(5) adsorbed at on-top site is 4.16 angstrom and the CP-corrected binding energy (MP2) is -35.4 kJ/mol, implying a weakly adsorption of hydrated Na+ cation on clean Si(111) surface.
Resumo:
A supported heteropolyacid (HPA), H3PMo12O40/SiO2, calcined in vacuum at 150 degrees C, has been shown to be an efficient solid acid catalyst for the synthesis of 2-butoxy ethanol with high selectivity. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Nylon membrane was modified by binding with polyhydroxyl-containing materials to increase its hydrophilicity and reduce its nonspecific interaction with proteins. The effect of binding hydrophilic materials on amount of ligand bound-Cibacron Blue F3GA (CBF) was investigated. Experimental data showed that the amount of CBF bound can be increased significantly after binding of hydrophilic materials.