969 resultados para Esters.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fat acid esters and tocopherolic derivatives are of great economic interest in many industries. The sunflower oil, which had its rich constitution in these composites, is a very interesting raw material source for the job in some sectors as bio-carburants, bio-lubrificants, bio-surfactants, dispersing agents, food industries, medicines and cosmetics. A system emulsified steady from this oil can wide be used in the therapeutical one, therefore it is of easy acceptance for the patient, for being pharmaceutical forms that allow a better medicine administration. The chemical composition characteristics, rich in unsaturad fat acid and tocopherolic derivatives, the sunflower oil, make of the emulsified systems contend this oil a proposal promising for formularizations of pharmaceutical and cosmetic use with antirust and photoprotection. The general objective of this work was to apply the HLB beddings to determine the sunflower oil critical HLB and, from this, to be able to evaluate the ideal mixture of the constituent of this system through the study of the ternary diagrams for the determination of the ratio of constituent that will generate the emulsion most steady

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of biodiesel has become an important and attractive process for the production of alternative fuels. This work presents a study of the biodiesel production from coconut oil (Cocos nucifera L.), by two routes: direct transesterification using NaOH as catalyst and esterification (with H2SO4) followed by basic transesterification. The reactor was built in pirex with 1L of capacity and was equipped with a jacket coupled with a thermostatic bath to temperature control, a mecanical stirring is also present in the reactor. The analysis of oil composition was carried out by gas chromatography and esters compounds were identified. The parameters of molar ratio oil/alcohol, reaction time and temperature were studied and their influence on the conversion products was evaluated using experimental planning (23). The molar ratio was the most significant variable by the statistical planning analysis. Conversions up to 85.3% where achived in the esterification/transesterification, with molar ratio 1:6 at 60ºC and 90 minutes of reaction. For the direct transesterification, route conversions up 87.4% eas obtained using 1:6.5 molar ratio at 80ºC and 60 minutes of reaction. The Coconut oil was characterized by their physic chemical properties and key constituents of the oil. The lauric acid was the main constituint and the oil showed high acidity. The biodiesel produced was characterized by its main physicochemical properties, indicating satisfactory results when compared to standard values of National Petroleum Agency. The work was supplemented with a preliminary assessment of the reaction kinetic

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of new fuels is an important field of scientific and technological activities, since much of the energy consumed in the world is obtained from oil, coal and natural gas, and these sources are limited and not renewable. Recently it has assessed the employment of microemulsions as an alternative for obtaining fuel isotropic between phases originally not miscible. Among many advantages, emphasizes the application of substances that provide the reduction of levels of emissions compared to fossil fuels. Thus, this work was a study of various microemulsified systems, aiming to check the performance of the winsor regions front of the use of surfactants: RENEX 18 → 150, UNITOL L-60 → L-100 and AMIDA 60, together with structure of esters from soybean and castor bean oils. From the results it were chosen four systems to physico-chemical analyzes: System I RENEX 60, Soil bean oil, methylic ester (EMOS) and water; System II RENEX 60/AMIDA 60, EMOS and water; System III RENEX 70, mamona oil methylic ester (EMOM) and water and System IV RENEX 95, EMOM and water. The tests of physico-chemical characterization and study of temperature increase were done with nine points with different compositions in a way to include the interest area (microemulsion W/O). After this study, was conducted a modeling to predict the viscosity, the property is more varied as function of compositions systems changes. The best results were the systems II and IV with a temperature stability above 60°C. The system I had its physico-chemical characterization very similar to a fossil fuel. The system II was the best one due to its corrosivity be stable. In the modeling the four systems had shown good, with an error that varied between 5 and 18%, showing to be possible the viscosity prediction from the composition of the system. The effects the microemulsion and the engine´s performance with the microemulsion were also avaliated. The tests were performed in a cycle-diesel engine. The potency and consumption were analysed. Results show a slight increase the rendiment fuel compared with the conventional as well as a decrease in specific consumption

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The developments in formulating drilling fluids to apply in petroleum fields are based on new technologies and environmental challenges, where the technical performance of a developed drilling fluid is used to produce a minimum environmental impact, showing great economy in costs. It is well known that the potential use of oil-based drilling fluids is limited because these fluids when discharged in the sea do not disperse as much as water-based ones and may form waterproof films in the seabed, having a profound effect on plants and animals living in this environment. The current works have been made in investigating fluids called pseudofluids, which are synthetic ester-based, n-paraffin-based and other fluids formed from inverse emulsion. In this research the principal parameters involved in inverse emulsion process were studied, in laboratory scale, using esters as main component. Others commercial drilling fluids were used as comparative samples, as well as samples from laboratory and field where these drilling fluids are being applied. Concentrations of emulsifier and organophilic clay, which are viscosity donor, were varied to verify the influence of these parameters, in different oil/water ratios (55/45, 60/40, 65/35, 70/30, and 75/25). The salt concentration (NaCl) is an indicative parameter of stability and activity of an esterbased fluid. In this research the salt concentration was varied in 10,000, 20,000, and 50,000 ppm of NaCl. Some rheological properties of the produced fluids were studied, such as: initial gel, plastic viscosity, yield point, and apparent viscosity. Through the obtained rheological measures, the existence of two systems could be verified: fluid and flocculated. It could be noticed that the systems were influenced, directly, by the oil/water ratio and emulsifier, organophilic clay and NaCl concentrations. This study showed the viability to use an ester obtained from a regional vegetable product babaçu coconut oil to obtain an efficient and environmental safe drilling fluid

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the growth and development of modern society, arises the need to search for new raw materials and new technologies which present the "clean" characteristic, and do not harm the environment, but can join the energy needs of industry and transportation. The Moringa oleifera Lam, plant originating from India, and currently present in the Brazilian Northeast, presents itself as a multi-purpose plant, can be used as a coagulant in water treatment, as a natural remedy and as a feedstock for biodiesel production. In this work, Moringa has been used as a raw material for studies on the extraction and subsequently in the synthesis of biodiesel. Studies have been conducted on various techniques of Moringa oil extraction (solvents, mechanical pressing and enzymatic), being specially developed an experimental design for the aqueous extraction with the aid of the enzyme Neutrase© 0.8 L, with the aim of analyzing the influence variable pH (5.5-7.5), temperature (45-55°C), time (16-24 hours) and amount of catalyst (2-5%) on the extraction yield. In relation to study of the synthesis of biodiesel was initially carried out a conventional transesterification (50°C, KOH as a catalyst, methanol and 60 minutes reaction). Next, a study was conducted using the technique of in situ transesterification by using an experimental design variables as temperature (30-60°C), catalyst amount (2-5%), and molar ratio oil / ethanol (1:420-1:600). The extraction technique that achieved the highest extraction yield (35%) was the one that used hexane as a solvent. The extraction using 32% ethanol obtained by mechanical pressing and extraction reached 25% yield. For the enzymatic extraction, the experimental design indicated that the extraction yield was most affected by the effect of the combination of temperature and time. The maximum yield obtained in this extraction was 16%. After the step of obtaining the oil was accomplished the synthesis of biodiesel by the conventional method and the in situ technique. The method of conventional transesterification was obtained a content of 100% and esters by in situ technique was also obtained in 100% in the experimental point 7, with a molar ratio oil / alcohol 1:420, Temperature 60°C in 5% weight KOH with the reaction time of 1.5 h. By the experimental design, it was found that the variable that most influenced the ester content was late the percentage of catalyst. By physico-chemical analysis it was observed that the biodiesel produced by the in situ method fell within the rules of the ANP, therefore this technique feasible, because does not require the preliminary stage of oil extraction and achieves high levels of esters

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The industry, over the years, has been working to improve the efficiency of diesel engines. More recently, it was observed the need to reduce pollutant emissions to conform to the stringent environmental regulations. This has attached a great interest to develop researches in order to replace the petroleum-based fuels by several types of less polluting fuels, such as blends of diesel oil with vegetable oil esters and diesel fuel with vegetable oils and alcohol, emulsions, and also microemulsions. The main objective of this work was the development of microemulsion systems using nonionic surfactants that belong to the Nonylphenols ethoxylated group and Lauric ethoxylated alcohol group, ethanol/diesel blends, and diesel/biodiesel blends for use in diesel engines. First, in order to select the microemulsion systems, ternary phase diagrams of the used blends were obtained. The systems were composed by: nonionic surfactants, water as polar phase, and diesel fuel or diesel/biodiesel blends as apolar phase. The microemulsion systems and blends, which represent the studied fuels, were characterized by density, viscosity, cetane number and flash point. It was also evaluated the effect of temperature in the stability of microemulsion systems, the performance of the engine, and the emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons, and smoke for all studied blends. Tests of specific fuel consumption as a function of engine power were accomplished in a cycle diesel engine on a dynamometer bench and the emissions were evaluated using a GreenLine 8000 analyzer. The obtained results showed a slight increase in fuel consumption when microemulsion systems and diesel/biodiesel blends were burned, but it was observed a reduction in the emission of nitrogen oxides, unburned hydrocarbons, smoke index and f sulfur oxides

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analytical procedure has been developed for simultaneous determination of solvent mixture vapors to enable evaluation of occupational exposure. To determine the desorption efficiency the volatile components of the solvent mixtures were generated from a glass tube filled with glass wool. This device is easy to prepare and use. These vapors were then collected in activated charcoal tubes and analyzed by capillary gas chromatography. The method was tested with a mixture of 22 solvents, including aliphatic and aromatic hydrocarbons, alcohols, ethers, esters, and ketones, oil at low concentrations. All the components were defected. When a 99: 1 mixture of carbon disulfide-dimethylformamide was used for desorption the efficiency was > 75% for most of the solvents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From the stem bark of Xylopia aromatica (Annonaceae), have been isolated two new labdane dimers as their methyl esters, together with the known compounds ent-labda-8(17),13(16),14-trien-18-oic acid, sitosterol and stigmasterol. The structures of the dimers were elucidated on the basis of detailed spectroscopic analyses. (C) 1999 Elsevier B.V. Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work biodiesel was gotten through the transesterification reaction using the oil of castor as source of triglycerides and using the methylic route for obtaining of esters. For the characterization of biodiesel and its mixtures with mineral diesel oil, physical chemical parameters and several analytical techniques had been used, as well as: gas chromatography (GC), nuclear magnetic resonance of proton (1H NMR), infrared spectroscopy (IR) and thermal analysis. The chromatography confirmed the complete reaction of esters in biodiesel presenting a 97,08% conversion. The 1H - NMR presented singlet in 3,6 ppm corresponding to the hydrogen of the group ester RCOO CH3. The infrared presented a strong band in 1741 cm-1 referring to stretching C=O of ester and an average band in 1175 cm-1 referring C O deformation. With the data of thermal analysis it was possible to observe the thermal and oxidative stability of the samples changing the atmospheres of synthetic air and nitrogen, where stages of the thermal decomposition had been verified and had been attributed to the volatilization and/or decomposition of the triacylglycerides. The thermal degradation of the samples was carried through 150 and 210°C during 1, 12, 24 and 48 hours and was observed change in the thermogravimetric profile, therefore an increase in the number of stages of the thermal decomposition also occurred indicating characteristic intermediate composites of polymerization, being this confirmed through the rheological study that presented brusque increase of viscosity. The kinetic study showed that the activation energy has the following order: biodiesel > mineral diesel oil > mixtures biodiesel/diesel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the Layered Double Hydroxides (LDH s) type hydrotalcite were synthesized, characterized and tested as basic heterogeneous catalysts for the production of biodiesel by transesterification of sunflower oil with methanol. The synthesis of materials Layered Double Hydroxides (LDH s) by co-precipitation method from nitrates of magnesium and aluminum, and sodium carbonate. The materials were submitted to the variation in chemical composition, which is the amount of Mg2+ ions replaced by Al3+. This variation affects the characteristic physico-chemical and reaction the solid. The molar ratio varied in the range of 1:1 and 3:1 magnesium / aluminum, and their values between 0.2 and 0.33. This study aims to evaluate the influence of variation of molar ratio of mixed oxides derived from LDH s and the influence of impregnation of a material with catalytic activity, the KI, the rate of conversion of sunflower oil into methyl esters (biodiesel) through transesterification by heterogeneous catalysis. .The catalysts were calcined at 550 ° C and characterized by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy of X-ray (SEM / EDS), thermogravimetric analysis (TG) and test basicity. The transesterification reaction was performed for reflux is a mixture of sunflower oil and methanol with a molar ratio of 15:1, a reaction time of 4h and a catalyst concentration of 2% by weight. The physical-chemical characterization of sunflower oil and biodiesel obtained by the route methyl submitted according NBR, EN, ASTM. Subsequently, it was with the chromatographic and thermogravimetric characterizations of oils. The results of chromatographic analysis showed that the catalysts were effective in converting vegetable oil into biodiesel, in particular the type hydrotalcite KI-HDL-R1, with a conversion of 99.2%, indicating the strong influence of the chemical composition of the material, in special due to presence of potassium in the structure of the catalyst