984 resultados para Enzyme Activation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intracellular pathogen sensor, NOD2, has been implicated in regulation of wide range of anti-inflammatory responses critical during development of a diverse array of inflammatory diseases; however, underlying molecular details are still imprecisely understood. In this study, we demonstrate that NOD2 programs macrophages to trigger Notch1 signaling. Signaling perturbations or genetic approaches suggest signaling integration through cross-talk between Notch1-PI3K during the NOD2-triggered expression of a multitude of immunological parameters including COX-2/PGE(2) and IL-10. NOD2 stimulation enhanced active recruitment of CSL/RBP-Jk on the COX-2 promoter in vivo. Intriguingly, nitric oxide assumes critical importance in NOD2-mediated activation of Notch1 signaling as iNOS(-/-) macrophages exhibited compromised ability to execute NOD2-triggered Notch1 signaling responses. Correlative evidence demonstrates that this mechanism operates in vivo in brain and splenocytes derived from wild type, but not from iNOS(-/-) mice. Importantly, NOD2-driven activation of the Notch1-PI3K signaling axis contributes to its capacity to impart survival of macrophages against TNF-alpha or IFN-gamma-mediated apoptosis and resolution of inflammation. Current investigation identifies Notch1-PI3K as signaling cohorts involved in the NOD2-triggered expression of a battery of genes associated with anti-inflammatory functions. These findings serve as a paradigm to understand the pathogenesis of NOD2-associated inflammatory diseases and clearly pave a way toward development of novel therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

gamma delta T-cell receptor-bearing T cells (gamma delta T cells) are readily activated by intracellular bacterial pathogens such as Mycobacterium tuberculosis. The bacterial antigens responsible for gamma delta T-cell activation remain poorly characterized. We have found that heat treatment of live M. tuberculosis bacilli released into the supernatant an antigen which stimulated human gamma delta T cells, gamma delta T-cell activation was measured by determining the increase in percentage of gamma delta T cells by flow cytometry in peripheral blood mononuclear cells stimulated with antigen and by proliferation of gamma delta T-cell lines with monocytes as antigen-presenting cells. Supernatant from heat-treated M. tuberculosis was fractionated by fast-performance liquid chromatography (FPLC) on a Superose 12 column. Maximal gamma delta T-cell activation was measured for a fraction of 10 to 14 kDa. Separation of the supernatant by preparative isoelectric focusing demonstrated peak activity at a pi of <4.0. On two-dimensional gel electrophoresis, the 10- to 14-kDa FPLC fraction contained at least seven distinct molecules, of which two had a pi of <4.5. Protease treatment reduced the bioactivity of the 10- to 14-kDa FPLC fraction for both resting and activated gamma delta T cells. Murine antibodies raised to the 10- to 14-kDa fraction reacted by enzyme-linked immunosorbent assay with antigens of 10 to 14 kDa in lysate of M. tuberculosis. In addition, gamma delta T cells proliferated in response to an antigen of 10 to 14 kDa present in M. tuberculosis lysate. gamma delta T-cell-stimulating antigen was not found in culture filtrate of M. tuberculosis but was associated,vith the bacterial pellet and lysate of M. tuberculosis. These results provide a preliminary characterization of a 10- to 14-kDa, cell-associated, heat-stable, low-pI protein antigen of M. tuberculosis which is a major stimulus for human gamma delta T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis of beta-lactam antibiotics using zinc-containing metallo-beta-lactamases (m beta l) is one of the major bacterial defense systems. These enzymes can catalyze the hydrolysis of a variety of antibiotics including the latest generation of cephalosporins, cephamycins, and imipenem. It is shown in this paper that the cephalosporins having heterocyclic - SR side chains are less prone to m beta l-mediated hydrolysis than the antibiotics that do not have such side chains. This is partly due to the inhibition of enzyme activity by the thione moieties eliminated during hydrolysis. When the enzymatic hydrolysis of oxacillin was carried out in the presence of heterocyclic thiones such as MU, MDT, DMETT, and MMA, the catalytic activity of the enzyme was inhibited significantly by these compounds. Although the heterocyclic - SR moieties eliminated from the beta-lactams upon hydrolysis undergo a rapid tautomerism between thione and thiol forms, these compounds act as thiolate ligands toward zinc(II) ions. The structural characterization of two model tetranuclear zinc(II) thiolate complexes indicates that the -SR side chains eliminated from the antibiotics may interact with the zinc(II) metal center of m beta l through their sulfur atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirteen terrestrial psychrotrophic bacteria from Antarctica were screened for the presence of a thermolabile ribonuclease (RNAase-HL). The enzyme was detected in three isolates of Pseudomonas fluorescens and one isolate of Pseudomonas syringae. It was purified from one P. Fluorescens isolate and the molecular mass of the enzyme as determined by SDS-PAGE was 16 kDa. RNAase-HL exhibited optimum activity around 40 degrees C at pH 7.4. It could hydrolyse Escherichia coli RNA and the synthetic substrates poly(A), poly(C), poly(U) and poly(A-U). Unlike the crude RNAase from mesophilic P. Fluorescens and pure bovine pancreatic RNAase A which were active even at 65 degrees C, RNAase-HL was totally and irreversibly inactivated at 65 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type III restriction endonuclease EcoPI, coded by bacteriophage Fl, cleaves unmodified DNA in the presence of ATP and magnesium ions. We show that purified EcoPI restriction enzyme fails to cleave DNA in the presence of non-hydrolyzable ATP analogs. More importantly, this study demonstrates that EcoPI restriction enzyme has an inherent ATPase activity, and ATP hydrolysis is necessary for DNA cleavage. Furthermore, we show that the progress curve of the reaction with Eco PI restriction enzyme exhibits a lag which is dependent on the enzyme concentration. Kinetic analysis of the progress curves of the reaction suggest slow transitions that can occur during the reaction, characteristic of hysteretic enzymes. The role of ATP in the cleavage mechanism of type III restriction enzymes is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The well-known linear relationship (T?S# =??H# +?, where 1 >? > 0,? > 0) between the entropy (?S#) and the enthalpy (?H#) of activation for reactions in polar liquids is investigated by using a molecular theory. An explicit derivation of this linear relation from first principles is presented for an outersphere charge transfer reaction. The derivation offers microscopic interpretation for the quantities? and?. It has also been possible to make connection with and justify the arguments of Bell put forward many years ago.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p-Hydroxyphenylacetate-3-hydroxylase, an inducible enzyme isolated from the soil bacterium Pseudomonas putida, catalyzes the conversion of p-hydroxyphenylacetate to 3,4-dihydroxyphenylacetate. The enzyme requires two protein components: a flavoprotein and a colorless protein referred to as the coupling protein. The flavoprotein alone in the presence of p-hydroxyphenylacetate and substrate analogs catalyzes the wasteful oxidation of NADH with the stoichiometric generation of H2O2. A 1:1 complex of the flavoprotein and coupling protein is required for stoichiometric product formation. Such complex formation also eliminates the nonproductive NADH oxidase activity of the flavoprotein. A new assay measuring the product formation activity of the enzyme was developed using homoprotocatechuate-2,3-dioxygenase, as monitoring the oxidation of NADH was not sufficient to demonstrate enzyme activity. The coupling protein does not seem to have any redox center in it. Thus, this 2-component flavin hydroxylase resembles the other aromatic hydroxylases in that the only redox chromophore present is FAD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of inter-subunit interactions in maintaining optimal catalytic activity in triosephosphate isomerase (TIM) has been probed, using the Plasmodium falciparum enzyme as a model. Examination of subunit interface contacts in the crystal structures suggests that residue 75 (Thr, conserved) and residue 13 (Cys, variable) make the largest number of inter-subunit contacts. The mutants Cys13Asp (C13D) and Cys13Glu (C13E) have been constructed and display significant reduction in catalytic activity when compared with wild-type (WT) enzyme (similar to 7.4-fold decrease in k(cat) for the C13D and similar to 3.3-fold for the C13E mutants). Analytical gel filtration demonstrates that the C13D mutant dissociates at concentrations < 1.25 mu M, whereas the WT and the C13E enzymes retain the dimeric structure. The order of stability of the mutants in the presence of chemical denaturants, like urea and guanidium chloride, is WT > Cys13Glu > Cys13Asp. Irreversible thermal precipitation temperatures follow the same order as well. Modeling studies establish that the Cys13Asp mutation is likely to cause a significantly greater structural perturbation than Cys13Glu. Analysis of sequence and structural data for TIMs from diverse sources suggests that residues 13 and 82 form a pair of proximal sites, in which a limited number of residue pairs may be accommodated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA-dependent RNA polymerase II from Candida utilis has been purified to near homogeneity. The purified enzyme resolved into three subforms, viz. IIO, IIA and IIB. On SDS-PAGE the enzyme showed ten polypeptides with molecular weights in the range of 205 kDa to 14 kDa. By two dimensional electrophoresis (IEF followed by SDS-PAGE) the presence of basic and acidic polypeptides has been demonstrated. The enzyme showed Km values of 5, 5.6 and 8 mu M for GTP, CTP and ATP, respectively, and the activity was inhibited by low levels of oc-amanitin and antibodies raised against bovine RNA polymerase II. By Western blot analysis the enzyme was found to cross-react with antibodies to bovine RNA polymerase II. RNA polymerase II from G. utilis is a phosphoprotein, the subunits RPB1 and RPB10 were found to be phosphorylated. Analysis of carboxy-terminal domain indicated that it was functionally redundant at least in case of nonspecific transcription, implicating its role in other nuclear processes, such as promoter specific initiation or transcription activation or RNA processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>Transcription activator C employs a unique mechanism to activate mom gene of bacteriophage Mu. The activation process involves, facilitating the recruitment of RNA polymerase (RNAP) by altering the topology of the promoter and enhancing the promoter clearance by reducing the abortive transcription. To understand the basis of this multi-step activation mechanism, we investigated the nature of the physical interaction between C and RNAP during the process. A variety of assays revealed that only DNA-bound C contacts the beta' subunit of RNAP. Consistent to these results, we have also isolated RNAP mutants having mutations in the beta' subunit which were compromised in C-mediated activation. Mutant RNAPs show reduced productive transcription and increased abortive initiation specifically at the C-dependent mom promoter. Positive control (pc) mutants of C, defective in interaction with RNAP, retained the property of recruiting RNAP to the promoter but were unable to enhance promoter clearance. These results strongly suggest that the recruitment of RNAP to the mom promoter does not require physical interaction with C, whereas a contact between the beta' subunit and the activator, and the subsequent allosteric changes in the active site of the enzyme are essential for the enhancement of promoter clearance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Res subunits of the type III restriction-modification enzymes share a statistically significant amino acid sequence similarity with several RNA and DNA helicases of the so-called DEAD family. It was postulated that in type III restriction enzymes a DNA helicase activity may be required for local unwinding at the cleavage site. The members of this family share seven conserved motifs, all of which are found in the Res subunit of the type III restriction enzymes. To determine the contribution, if any, of these motifs in DNA cleavage by EcoPI, a type III restriction enzyme, we have made changes in motifs I and II. While mutations in motif I (GTGKT) clearly affected ATP hydrolysis and resulted in loss of DNA cleavage activity, mutation in motif II (DEPH) significantly decreased ATP hydrolysis but had no effect on DNA cleavage. The double mutant R.EcoPIK90R-H229K showed no significant ATPase or DNA restriction activity though ATP binding was not affected. These results imply that there are at least two ATPase reaction centres in EcoPI restriction enzyme. Motif I appears to be involved in coupling DNA restriction to ATP hydrolysis. Our results indicate that EcoPI restriction enzyme does not have a strand separation activity. We suggest that these motifs play a role in the ATP-dependent translocation that has been proposed to occur in the type III restriction enzymes. (C) 1997 Academic Press Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin converting enzyme (ACE) regulates the blood pressure by converting angiotensin I to angiotensin II and bradykinin to bradykinin 1-7. These two reactions elevate the blood pressure as angiotensin II and bradykinin are vasoconstrictory and vasodilatory hormones, respectively. Therefore, inhibition of ACE is an important strategy for the treatment of hypertension. The natural substrates of ACE, i.e., angiotensin II and bradykinin, contain a Pro-Phe motif near the site of hydrolysis. Therefore, there may be a Pro-Phe binding pocket at the active site of ACE, which may facilitate the substrate binding. In view of this, we have synthesized a series of thiol-and selenol-containing dipeptides and captopril analogues and studied their ACE inhibition activities. This study reveals that both the selenol or thiol moiety and proline residues are essential for ACE inhibition. Although the introduction of a Phe residue to captopril and its selenium analogue considerably reduces the inhibitory effect, there appears to be a Phe binding pocket at the active site of ACE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triplex forming oligonucleotides (TFOs) have the potential to modulate gene expression. While most of the experiments are directed towards triplex mediated inhibition of gene expression the strategy potentially could be used for gene specific activation. In an attempt to design a strategy for gene specific activation in vivo applicable to a large number of genes we have designed a TFO based activator-target system which may be utilized in Saccharomyces cerevisiae or any other system where Gal4 protein is ectopically expressed. The total genome sequence of Saccharomyces cerevisiae and expression profiles were used to select the target genes with upstream poly (pu/py) sequences. We have utilized the paradigm of Gal4 protein and its binding site. We describe here the selection of target genes and design of hairpin-TFO including the targeting sequences containing polypurine stretch found in the upstream promoter regions of weakly expressed genes. We demonstrate, the formation of hairpin-TFO, its binding to Gal4 protein, its ability to form triplex with the target duplex in vitro, the effect of polyethylenimine on complex formation and discuss the implication on in vivo transcription activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple thermodynamic analysis of the well-known Michaelis-Menten equation (MME) of enzyme catalysis is proposed that employs the chemical potential mu to follow the Gibbs free energy changes attending the formation of the enzyme-substrate complex and its turnover to the product. The main conclusion from the above analysis is that low values of the Michaelis constant KM and high values of the turnover number k(cat) are advantageous: this supports a simple algebraic analysis of the MME, although at variance with current thinking. Available data apparently support the above findings. It is argued that transition state stabilisation - rather than substrate distortion or proximity - is the key to enzyme catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guanylate cyclase activating protein-1 (GCAP1) is required for activation of retinal guanylate cyclase-1 (RetGC1), which is essential for recovery of photoreceptor cells to the dark state. In this paper, experimentally derived observations are reported that help in explaining why a proline→leucine mutation at position 50 of human GCAP1 results in cone–rod dystrophy in a family carrying this mutation. The primary amino acid sequence of wild-type GCAP1 was mutated using site-directed mutagenesis to give a leucine at position 50. In addition, serine replaced a glutamic acid residue at position 6 to promote N‐terminal myristoylation, yielding the construct GCAP1 E6S/P50L. The enzyme was over-expressed in Escherichia coli cells, isolated and purified before being used in assays with RetGC1, characterized by circular dichroism (CD) spectroscopy, and investigated for protease resistance and thermal stability. Assays of cyclic guanosine monophosphate (cGMP) synthesis from guanosine triphosphate by RetGC1 in the presence of E6S/P50L showed that E6S/P50L could activate RetGC1 and displayed similar calcium sensitivity to wild-type GCAP1. In addition, E6S/P50L and wild-type GCAP1 possess similar CD spectra. However, there was a marked increase in the susceptibility to protease degradation and also a reduction in the thermal stability of E6S/P50L as observed by both the cGMP assay and CD spectroscopy. It is therefore suggested that although GCAP1 E6S/P50L has a similar activity and calcium dependency profile to the wild-type GCAP1, its lower stability could reduce its cellular concentration, which would in turn alter [Ca2+] and result in death of cells.