985 resultados para Enterococcus faecalis genotyping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hyl(Efm) gene (encoding a putative hyaluronidase) has been found almost exclusively in Enterococcus faecium clinical isolates, and recently, it was shown to be on a plasmid which increased the ability of E. faecium strains to colonize the gastrointestinal tract. In this work, the results of mating experiments between hyl(Efm)-containing strains of E. faecium belonging to clonal cluster 17 and isolated in the United States and Colombia indicated that the hyl(Efm) gene of these strains is also carried on large plasmids (>145 kb) which we showed transfer readily from clinical strains to E. faecium hosts. Cotransfer of resistance to vancomycin and high-level resistance (HLR) to aminoglycosides (gentamicin and streptomycin) and erythromycin was also observed. The vanA gene cluster and gentamicin resistance determinants were genetically linked to hyl(Efm), whereas erm(B) and ant(6)-I, conferring macrolide-lincosamide-streptogramin B resistance and HLR to streptomycin, respectively, were not. A hyl(Efm)-positive transconjugant resulting from a mating between a well-characterized endocarditis strain [TX0016 (DO)] and a derivative of a fecal strain of E. faecium from a healthy human volunteer (TX1330RF) exhibited increased virulence in a mouse peritonitis model. These results indicate that E. faecium strains use a strategy which involves the recruitment into the same genetic unit of antibiotic resistance genes and determinants that increase the ability to produce disease. Our findings indicate that the acquisition of the hyl(Efm) plasmids may explain, at least in part, the recent successful emergence of some E. faecium strains as nosocomial pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is one of the most important pathogens causing mastitis in dairy cows and in Mediterranean buffaloes. Genotype B (GTB) is contagious in dairy cows and may occur in up to 87% of cows of a dairy herd. It was the aim of this study to evaluate genotypes present, clinical outcomes, and prevalence of Staph. aureus in milk samples of primiparous Mediterranean dairy buffaloes. Two hundred composite milk samples originating from 40 primiparous buffaloes were collected from May to June 2012, at d 10, 30, 60, 90, and 150 d in milk (DIM) to perform somatic cell counts and bacteriological cultures. Daily milk yields were recorded. Before parturition until 40 to 50 DIM, all primiparous animals were housed separated from the pluriparous animals. Milking was performed in the same milking parlor, but the primiparous animals were milked first. After 50 DIM, the primiparous were mixed with the pluriparous animals, including the milking procedure. Individual quarter samples were collected from each animal, and aliquots of 1 mL were mixed and used for molecular identification and genotyping of Staph. aureus. The identification of Staph. aureus was performed verifying the presence of nuc gene by nuc gene PCR. All the nuc-positive isolates were subjected to genotype analysis by means of PCR amplification of the 16S-23S rRNA intergenic spacer region and analyzed by a miniaturized electrophoresis system. Of all 200 composite samples, 41 (20.5%) were positive for Staph. aureus, and no genotype other than GTB was identified. The prevalence of samples positive for Staph. aureus was 0% at 10 DIM and increased to a maximum of 22/40 (55%) at 90 DIM. During the period of interest, 14 buffaloes tested positive for Staph. aureus once, 6 were positive twice, and 5 were positive 3 times, whereas 15 animals were negative at every sampling. At 90 and 150 DIM, 7 (17.5%) and 3 buffaloes (7.5%), respectively, showed clinical mastitis (CM), and only 1 (2.5%) showed CM at both samplings. At 60, 90, and 150 DIM, 1 buffalo was found with subclinical mastitis at each sampling. At 30, 60, 90, and 150 DIM, 2.5 (1/40), 22.5 (9/40), 35 (14/40), and 10% (4/40) were considered affected by intramammary infection, respectively. Buffaloes with CM caused by Staph. aureus had statistically significantly higher mean somatic cell count values (6.06 ± 0.29, Log10 cells/mL ± standard deviation) and statistically significantly lower mean daily milk yields (7.15 ± 1.49, liters/animal per day) than healthy animals (4.69 ± 0.23 and 13.87 ± 2.64, respectively), buffaloes with IMI (4.82 ± 0.23 and 11.16 ± 1.80, respectively), or with subclinical mastitis (5.47 ± 0.10 and 10.33 ± 0.68, respectively). Based on our knowledge, this is the first time that Staph. aureus GTB has been identified in milk samples of dairy Mediterranean buffaloes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution structural information on optimally preserved bacterial cells can be obtained with cryo-electron microscopy of vitreous sections. With the help of this technique, the existence of a periplasmic space between the plasma membrane and the thick peptidoglycan layer of the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus was recently shown. This raises questions about the mode of polymerization of peptidoglycan. In the present study, we report the structure of the cell envelope of three gram-positive bacteria (B. subtilis, Streptococcus gordonii, and Enterococcus gallinarum). In the three cases, a previously undescribed granular layer adjacent to the plasma membrane is found in the periplasmic space. In order to better understand how nascent peptidoglycan is incorporated into the mature peptidoglycan, we investigated cellular regions known to represent the sites of cell wall production. Each of these sites possesses a specific structure. We propose a hypothetic model of peptidoglycan polymerization that accommodates these differences: peptidoglycan precursors could be exported from the cytoplasm to the periplasmic space, where they could diffuse until they would interact with the interface between the granular layer and the thick peptidoglycan layer. They could then polymerize with mature peptidoglycan. We report cytoplasmic structures at the E. gallinarum septum that could be interpreted as cytoskeletal elements driving cell division (FtsZ ring). Although immunoelectron microscopy and fluorescence microscopy studies have demonstrated the septal and cytoplasmic localization of FtsZ, direct visualization of in situ FtsZ filaments has not been obtained in any electron microscopy study of fixed and dehydrated bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immigrants from high tuberculosis (TB) incidence regions are a risk group for TB in low-incidence countries such as Switzerland. In a previous analysis of a nationwide collection of 520 Mycobacterium tuberculosis isolates from 2000-2008, we identified 35 clusters comprising 90 patients based on standard genotyping (24-loci MIRU-VNTR and spoligotyping). Here, we used whole genome sequencing (WGS) to revisit these transmission clusters. Genome-based transmission clusters were defined as isolate pairs separated by ≤12 single nucleotide polymorphisms (SNPs). WGS confirmed 17/35 (49%) MIRU-VNTR clusters; the other 18 clusters contained pairs separated by >12 SNPs. Most transmission clusters (3/4) of Swiss-born patients were confirmed by WGS, as opposed to 25% (4/16) of clusters involving only foreign-born patients. The overall clustering proportion using standard genotyping was 17% (90 patients, 95% confidence interval [CI]: 14-21%), but only 8% (43 patients, 95% CI: 6-11%) using WGS. The clustering proportion was 17% (67/401, 95% CI: 13-21%) using standard genotyping and 7% (26/401, 95% CI: 4-9%) using WGS among foreign-born patients, and 19% (23/119, 95% CI: 13-28%) and 14% (17/119, 95% CI: 9-22%), respectively, among Swiss-born patients. Using weighted logistic regression, we found weak evidence for an association between birth origin and transmission (aOR 2.2, 95% CI: 0.9-5.5, comparing Swiss-born patients to others). In conclusion, standard genotyping overestimated recent TB transmission in Switzerland when compared to WGS, particularly among immigrants from high TB incidence regions, where genetically closely related strains often predominate. We recommend the use of WGS to identify transmission clusters in low TB incidence settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basis for the recent transition of Enterococcus faecium from a primarily commensal organism to one of the leading causes of hospital-acquired infections in the United States is not yet understood. To address this, the first part of my project assessed isolates from early outbreaks in the USA and South America using sequence analysis, colony hybridizations, and minimal inhibitory concentrations (MICs) which showed clinical isolates possess virulence and antibiotic resistance determinants that are less abundant or lacking in community isolates. I also revealed that the level of ampicillin resistance increased over time in clinical strains. By sequencing the pbp5 gene, I demonstrated an ~5% difference in the pbp5 gene between strains with MICs <4ug/ml and those with MICs >4µg/ml, but no specific sequence changes correlated with increases in MICs within the latter group. A 3-10% nucleotide difference was also seen in three other genes analyzed, which suggested the existence of two distinct subpopulations of E. faecium. This led to the second part of my project analyzing concatenated core gene sequences, SNPs, the 16S rRNA, and phylogenetics of 21 E. faecium genomes confirming two distinct clades; a community-associated (CA) clade and hospital-associated (HA) clade. Molecular clock calculations indicate that these two clades likely diverged ~ 300,000 to > 1 million years ago, long before the modern antibiotic era. Genomic analysis also showed that, in addition to core genomic differences, HA E. faecium harbor specific accessory genetic elements that may confer selection advantages over CA E. faecium. The third part of my project discovered 6 E. faecium genes with the newly identified “WxL” domain. My analyses, using RT-PCR, western blots, patient sera, whole-cell ELISA, and immunogold electron microscopy, indicated that E. faecium WxL genes exist in operons, encode bacterial cell surface localized proteins, that WxL proteins are antigenic in humans, and are more exposed on the surface of clinical isolates versus community isolates (even though they are ubiquitous in both clades). ELISAs and BIAcore analyses also showed that proteins encoded by these operons bind several different host extracellular matrix proteins, as well as to each other, suggesting a novel cell-surface complex. In summary, my studies provide new insights into the evolution of E. faecium by showing that there are two distantly related clades; one being more successful in the hospital setting. My studies also identified operons encoding WxL proteins whose characteristics could also contribute to colonization and virulence within this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of microsatellite markers in large-scale genetic studies is limited by its low throughput and high cost and labor requirements. Here, we provide a panel of 45 multiplex PCRs for fast and cost-efficient genome-wide fluorescence-based microsatellite analysis in grapevine. The developed multiplex PCRs panel (with up to 15-plex) enables the scoring of 270 loci covering all the grapevine genome (9 to 20 loci/chromosome) using only 45 PCRs and sequencer runs. The 45 multiplex PCRs were validated using a diverse grapevine collection of 207 accessions, selected to represent most of the cultivated Vitis vinifera genetic diversity. Particular attention was paid to quality control throughout the whole process (assay replication, null allele detection, ease of scoring). Genetic diversity summary statistics and features of electrophoretic profiles for each studied marker are provided, as are the genotypes of 25 common cultivars that could be used as references in other studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The VanC phenotype for clinical resistance of enterococci to vancomycin is exhibited by Enterococcus gallinarum and Enterococcus casseliflavus. Based on the detection of the cell precursor UDP-N-acetylmuramic acid pentapeptide intermediate terminating in d-Ala-d-Ser instead of d-Ala-d-Ala, it has been predicted that the VanC ligase would be a d-Ala-d-Ser rather than a d-Ala-d-Ala ligase. Overproduction of the E. casseliflavus ATCC 25788 vanC2 gene in Escherichia coli and its purification to homogeneity allowed demonstration of ATP-dependent d-Ala-d-Ser ligase activity. The kcat/Km2 (Km2 = Km for d-Ser or C-terminal d-Ala) ratio for d-Ala-d-Ser/d-Ala-d-Ala dipeptide formation is 270/0.69 for a 400-fold selection against d-Ala in the C-terminal position. VanC2 also has substantial d-Ala-d-Asn ligase activity (kcat/Km2 = 74 mM−1min−1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present the successful application of the microarray technology platform to the analysis of DNA polymorphisms. Using the rice genome as a model, we demonstrate the potential of a high-throughput genome analysis method called Diversity Array Technology, DArT‘. In the format presented here the technology is assaying for the presence (or amount) of a specific DNA fragment in a representation derived from the total genomic DNA of an organism or a population of organisms. Two different approaches are presented: the first involves contrasting two representations on a single array while the second involves contrasting a representation with a reference DNA fragment common to all elements of the array. The Diversity Panels created using this method allow genetic fingerprinting of any organism or group of organisms belonging to the gene pool from which the panel was developed. Diversity Arrays enable rapid and economical application of a highly parallel, solid-state genotyping technology to any genome or complex genomic mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linkage and association analyses were performed to identify loci affecting disease susceptibility by scoring previously characterized sequence variations such as microsatellites and single nucleotide polymorphisms. Lack of markers in regions of interest, as well as difficulty in adapting various methods to high-throughput settings, often limits the effectiveness of the analyses. We have adapted the Escherichia coli mismatch detection system, employing the factors MutS, MutL and MutH, for use in PCR-based, automated, high-throughput genotyping and mutation detection of genomic DNA. Optimal sensitivity and signal-to-noise ratios were obtained in a straightforward fashion because the detection reaction proved to be principally dependent upon monovalent cation concentration and MutL concentration. Quantitative relationships of the optimal values of these parameters with length of the DNA test fragment were demonstrated, in support of the translocation model for the mechanism of action of these enzymes, rather than the molecular switch model. Thus, rapid, sequence-independent optimization was possible for each new genomic target region. Other factors potentially limiting the flexibility of mismatch scanning, such as positioning of dam recognition sites within the target fragment, have also been investigated. We developed several strategies, which can be easily adapted to automation, for limiting the analysis to intersample heteroduplexes. Thus, the principal barriers to the use of this methodology, which we have designated PCR candidate region mismatch scanning, in cost-effective, high-throughput settings have been removed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sets of RNA ladders can be synthesized by transcription of a bacteriophage-encoded RNA polymerase using 3′-deoxynucleotides as chain terminators. These ladders can be used for sequencing of DNA. Using a nicked form of phage SP6 RNA polymerase in this study substantially enhanced yields of transcriptional sequencing ladders. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of chain-terminated RNA ladders allowed DNA sequence determination of up to 56 nt. It is also demonstrated that A→G and C→T variations in heterozygous and homozygous samples can be unambiguously identified by the mass spectrometric analysis. As a step towards single-tube sequencing reactions, α-thiotriphosphate nucleotide analogs were used to overcome problems caused by chain terminator-independent, premature termination and by the small mass difference between natural pyrimidine nucleotides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

VanX is a D-Ala-D-Ala dipeptidase that is essential for vancomycin resistance in Enterococcus faecium. Contrary to most proteases and peptidases, it prefers to hydrolyze the amino substrate but not the related kinetically and thermodynamically more favorable ester substrate D-Ala-D-lactate. The enzymatic activity of VanX was previously found to be inhibited by the phosphinate analogs of the proposed tetrahedral intermediate for hydrolysis of D-Ala-D-Ala. Here we report that such phosphinates are slow-binding inhibitors. D-3-[(1-Aminoethyl)phosphinyl]-D-2-methylpropionic acid I showed a time-dependent onset of inhibition of VanX and a time-dependent return to uninhibited steady-state rates upon dilution of the enzyme/inhibitor mixture. The initial inhibition constant Ki after immediate addition of VanX to phosphinate I to form the E-I complex is 1.5 microM but is then lowered by a relatively slow isomerization step to a second complex, E-I*, with a final K*i of 0.47 microM. This slow-binding inhibition reflects a Km/K*i ratio of 2900:1. The rate constant for the slow dissociation of complex E-I* is 0.24 min-1. A phosphinate analog with an ethyl group replacing what would be the side chain of the second D-alanyl residue in the normal tetrahedral adduct gives a K*i value of 90 nM. Partial proteolysis of VanX reveals two protease-sensitive loop regions that are protected by the intermediate analog phosphinate, indicating that they may be part of the VanX active site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent episodes of mass mortalities in the Mediterranean Sea have been reported for the closely related marine sponges Ircinia fasciculata and I. variabilis, which live in sympatry. In this context, the assessment of the genetic diversity, bottlenecks and connectivity of these sponges has become urgent in order to evaluate the potential effects of mass mortalities on their latitudinal range. Our study aims to establish 1.) the genetic structure, connectivity, and signs of bottlenecks across the populations of I. fasciculata, and 2.) the hybridization levels between I. fasciculata and I. variabilis. To accomplish the first objective, 194 individuals of I. fasciculata from 12 locations across the Mediterranean were genotyped at 14 microsatellite loci. For the second objective, mitochondrial cytochrome c oxidase subunit I sequences of 16 individuals from both species were analyzed along with genotypes at 12 microsatellite loci of 40 individuals coexisting in 3 Mediterranean populations. We detected strong genetic structure along the Mediterranean for I. fasciculata, with high levels of inbreeding in all locations and bottleneck signs in most locations. Oceanographic barriers like the Almeria-Oran front, North-Balearic front, and the Ligurian-Thyrrenian barrier seem to be impeding gene flow for I. fasciculata, adding population divergence to the pattern of isolation by distance derived from the low dispersal abilities of sponge larvae. Hybridization between both species occurred in some populations, which might be increasing genetic diversity and somewhat palliating the genetic loss caused by population decimation in I. fasciculata