971 resultados para Energy Integration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) are one of today’s most prominent instantiations of the ubiquituous computing paradigm. In order to achieve high levels of integration, WSNs need to be conceived considering requirements beyond the mere system’s functionality. While Quality-of-Service (QoS) is traditionally associated with bit/data rate, network throughput, message delay and bit/packet error rate, we believe that this concept is too strict, in the sense that these properties alone do not reflect the overall quality-ofservice provided to the user/application. Other non-functional properties such as scalability, security or energy sustainability must also be considered in the system design. This paper identifies the most important non-functional properties that affect the overall quality of the service provided to the users, outlining their relevance, state-of-the-art and future research directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity is regarded as one of the indispensable means to growth of any country’s economy. This source of power is the heartbeat of everything from the huge metropolitans, industries, worldwide computer networks and our global communication systems down to our homes. Electrical energy is the lifeline for any economic and societal development of a region or country. It is central to develop countries for maintaining acquired life styles and essential to developing countries for industrialisation and escaping poverty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simulation analysis is important approach to developing and evaluating the systems in terms of development time and cost. This paper demonstrates the application of Time Division Cluster Scheduling (TDCS) tool for the configuration of IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs using the simulation analysis, as an illustrative example that confirms the practical applicability of the tool. The simulation study analyses how the number of retransmissions impacts the reliability of data transmission, the energy consumption of the nodes and the end-to-end communication delay, based on the simulation model that was implemented in the Opnet Modeler. The configuration parameters of the network are obtained directly from the TDCS tool. The simulation results show that the number of retransmissions impacts the reliability, the energy consumption and the end-to-end delay, in a way that improving the one may degrade the others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing work in the context of energy management for real-time systems often ignores the substantial cost of making DVFS and sleep state decisions in terms of time and energy and/or assume very simple models. Within this paper we attempt to explore the parameter space for such decisions and possible constraints faced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente, perfil Gestão e Sistemas Ambientais

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radio frequency (RF) energy harvesting is an emerging technology that will enable to drive the next generation of wireless sensor networks (WSNs) without the need of using batteries. In this paper, we present RF energy harvesting circuits specifically developed for GSM bands (900/1800) and a wearable dual-band antenna suitable for possible implementation within clothes for body worn applications. Besides, we address the development and experimental characterization of three different prototypes of a five-stage Dickson voltage multiplier (with match impedance circuit) responsible for harvesting the RF energy. Different printed circuit board (PCB) fabrication techniques to produce the prototypes result in different values of conversion efficiency. Therefore, we conclude that if the PCB fabrication is achieved by means of a rigorous control in the photo-positive method and chemical bath procedure applied to the PCB it allows for attaining better values for the conversion efficiency. All three prototypes (1, 2 and 3) can power supply the IRIS sensor node for RF received powers of -4 dBm, -6 dBm and -5 dBm, and conversion efficiencies of 20, 32 and 26%, respectively. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks (LR-WPAN) including wireless sensor networks (WSNs). It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When in beaconenabled mode, the protocol can provide timeliness guarantees by using its Guaranteed Time Slot (GTS) mechanism. However, power-efficiency and timeliness guarantees are often two antagonistic requirements in wireless sensor networks. The purpose of this paper is to analyze and propose a methodology for setting the relevant parameters of IEEE 802.15.4-compliant WSNs that takes into account a proper trade-off between power-efficiency and delay bound guarantees. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters, using Network Calculus formalism. We then evaluate the delay bound guaranteed by a GTS allocation and express it as a function of the duty cycle. Based on the relation between the delay requirement and the duty cycle, we propose a power-efficient superframe selection method that simultaneously reduces power consumption and enables meeting the delay requirements of real-time flows allocating GTSs. The results of this work may pave the way for a powerefficient management of the GTS mechanism in an IEEE 802.15.4 cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our society relies on energy for most of its activities. One application domain inciding heavily on the energy budget regards the energy consumption in residential and non-residential buildings. The ever increasing needs for energy, resulting from the industrialization of developing countries and from the limited scalability of the traditional technologies for energy production, raises both problems and opportunities. The problems are related to the devastating effects of the greenhouse gases produced by the burning of oil and gas for energy production, and from the dependence of whole countries on companies providing gas and oil. The opportunities are mostly technological, since novel markets are opening for both energy production via renewable sources, and for innovations that can rationalize energy usage. An enticing research effort can be the mixing of these two aspects, by leveraging on ICT technologies to rationalize energy production, acquisition, and consumption. The ENCOURAGE project aims to develop embedded intelligence and integration technologies that will directly optimize energy use in buildings and enable active participation in the future smart grid environment.The primary application domains targeted by the ENCOURAGE project are non-residential buildings (e.g.: campuses) and residential buildings (e.g.: neighborhoods). The goal of the project is to achieve 20% of energy savings through the improved interoperability between various types of energy generation, consumption and storage devices; interbuilding energy exchange; and systematic performance monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a mixed integer optimization linear programming (MILP) model was applied to mixed line rate (MLR) IP over WDM and IP over OTN over WDM (with and without OTN grooming) networks, with aim to reduce network energy consumption. Energy-aware and energy-aware & short-path routing techniques were used. Simulations were made based on a real network topology as well as on forecasts of traffic matrix based on statistical data from 2005 up to 2017. Energy aware routing optimization model on IPoWDM network, showed the lowest energy consumption along all years, and once compared with energy-aware & short-path routing, has led to an overall reduction in energy consumption up to 29%, expecting to save even more than shortest-path routing. © 2014 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a systemic modeling for a PV system integrated into an electric grid. The modeling includes models for a DC-DC boost converter and a DC-AC two-level inverter. Classical or fuzzy PI controllers with pulse width modulation by space vector modulation associated with sliding mode control is used for controlling the PV system and power factor control is introduced at the output of the system. Comprehensive performance simulation studies are carried out with the modeling of the DC-DC boost converter followed by a two-level power inverter in order to compare the performance with the experimental results obtained during in situ operation with three commercial inverters. Also, studies are carried out to assess the quality of the energy injected into the electric grid in terms of harmonic distortion. Finally, conclusions regarding the integration of the PV system into the electric grid are presented. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last years the electricity industry has faced a restructuring process. Among the aims of this process was the increase in competition, especially in the generation activity where firms would have an incentive to become more efficient. However, the competitive behavior of generating firms might jeopardize the expected benefits of the electricity industry liberalization. The present paper proposes a conjectural variations model to study the competitive behavior of generating firms acting in liberalized electricity markets. The model computes a parameter that represents the degree of competition of each generating firm in each trading period. In this regard, the proposed model provides a powerful methodology for regulatory and competition authorities to monitor the competitive behavior of generating firms. As an application of the model, a study of the day-ahead Iberian electricity market (MIBEL) was conducted to analyze the impact of the integration of the Portuguese and Spanish electricity markets on the behavior of generating firms taking into account the hourly results of the months of June and July of 2007. The advantages of the proposed methodology over other methodologies used to address market power, namely Residual Supply index and Lerner index are highlighted. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 10 kJ electromagnetic forming (EMF) modulator with energy recovery based on two resonant power modules, each containing a 4.5 kV/30-kA silicon controlled rectifier, a 1.11-mF capacitor bank and an energy recovery circuit, working in parallel to allow a maximum actuator discharge current amplitude and rate of 50 kA and 2 kA/mu s was successfully developed and tested. It can be plugged in standard single phase 230 V/16 A mains socket and the circuit is able to recover up to 32% of its initial energy, reducing the charging time of conventional EMF systems by up to 68%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.