969 resultados para Endoplasmic-Reticulum Membrane


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insect oocytes grow in close association with the ovarian follicular epithelium (OFE), which escorts the oocyte during oogenesis and is responsible for synthesis and secretion of the eggshell. We describe a transcriptome of OFE of the triatomine bug Rhodnius prolixus, a vector of Chagas disease, to increase our knowledge of the role of FE in egg development. Random clones were sequenced from a cDNA library of different stages of follicle development. The transcriptome showed high commitment to transcription, protein synthesis, and secretion. The most abundant cDNA was a secreted (S) small, proline-rich protein with maximal expression in the vitellogenic follicle, suggesting a role in oocyte maturation. We also found Rp45, a chorion protein already described, and a putative chitin-associated cuticle protein that was an eggshell component candidate. Six transcripts coding for proteins related to the unfolded-protein response (UPR) by were chosen and their expression analyzed. Surprisingly, transcripts related to UPR showed higher expression during early stages of development and downregulation during late stages, when transcripts coding for S proteins participating in chorion formation were highly expressed. Several transcripts with potential roles in oogenesis and embryo development are also discussed. We propose that intense protein synthesis at the FE results in reticulum stress (RS) and that lowering expression of a set of genes related to cell survival should lead to degeneration of follicular cells at oocyte maturation. This paradoxical suppression of UPR suggests that ovarian follicles may represent an interesting model for studying control of RS and cell survival in professional S cell types. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by hypogammaglobulinemia and recurrent infections. Herein we addressed the role of unfolded protein response (UPR) in the pathogenesis of the disease. Augmented unspliced X-box binding protein 1 (XBP-1) mRNA concurrent with co-localization of IgM and BiP/GRP78 were found in one CVID patient. At confocal microscopy analysis this patient`s cells were enlarged and failed to present the typical surface distribution of IgM, which accumulated within an abnormally expanded endoplasmic reticulum. Sequencing did not reveal any mutation on XBP-1, neither on IRE-1 alpha that could potentially prevent the splicing to occur. Analysis of spliced XBP-1, IRE-1 alpha and BiP messages after LPS or Brefeldin A treatment showed that, unlike healthy controls that respond to these endoplasmic reticulum (ER) stressors by presenting waves of transcription of these three genes, this patient`s cells presented lower rates of transcription, not reaching the same level of response of healthy subjects even after 48 h of ER stress. Treatment with DMSO rescued IgM and IgG secretion as well as the expression of spliced XBP-1. Our findings associate diminished splicing of XBP-1 mRNA with accumulation of IgM within the ER and lower rates of chaperone transcription, therefore providing a mechanism to explain the observed hypogammaglobulinemia. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Type 2 diabetes mellitus results from the complex association of insulin resistance and pancreatic beta-cell failure. Obesity is the main risk factor for type 2 diabetes mellitus, and recent studies have shown that, in diet-induced obesity, the hypothalamus becomes inflamed and dysfunctional, resulting in the loss of the perfect coupling between caloric intake and energy expenditure. Because pancreatic beta-cell function is, in part, under the control of the autonomic nervous system, we evaluated the role of hypothalamic inflammation in pancreatic islet function. In diet-induced obesity, the earliest markers of hypothalamic inflammation are present at 8 weeks after the beginning of the high fat diet; similarly, the loss of the first phase of insulin secretion is detected at the same time point and is restored following sympathectomy. Intracerebroventricular injection of a low dose of tumor necrosis factor a leads to a dysfunctional increase in insulin secretion and activates the expression of a number of markers of apoptosis in pancreatic islets. In addition, the injection of stearic acid intracerebroventricularly, which leads to hypothalamic inflammation through the activation of tau-like receptor-4 and endoplasmic reticulum stress, produces an impairment of insulin secretion, accompanied by increased expression of markers of apoptosis. The defective insulin secretion, in this case, is partially dependent on sympathetic signal-induced peroxisome proliferator receptor-gamma coactivator Delta a and uncoupling protein-2 expression and is restored after sympathectomy or following PGC1 alpha expression inhibition by an antisense oligonucleotide. Thus, the autonomic signals generated in concert with hypothalamic inflammation can impair pancreatic islet function, a phenomenon that may explain the early link between obesity and defective insulin secretion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortus Delta wbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-alpha when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. Delta wbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Control of human visceral leishmaniasis in endemic regions is hampered in part by the lack of knowledge with respect of the role reservoirs and vector. In addition, there is not yet an understanding of how non-symptomatic subclinical infection might influence the maintenance of infection in a particular locality. Of worrisome is the limited accessibility to medical care in places with emerging drug resistance. There is still no available protective vaccine either for humans or other reservoirs. Leishmania species are protozoa that express multiple antigens which are recognized by the vertebrate immune system. Since there is not one immunodominant epitope recognized by most hosts, strategies must be developed to optimize selection of antigens for prevention and immunodiagnosis. For this reason, we generated a cDNA library from the intracellular amastigote form of Leishmania chagasi, the causative agent of South American visceral leishmaniasis. We employed a two-step expression screen of the library to systematically identify T and T-dependent B cell antigens. The first step was aimed at identifying the largest possible number of clones producing an epitope-containing polypeptide with a pool of sera from Brazilians with documented visceral leishmaniasis. After removal of clones encoding heat shock proteins, positive clones underwent a second step screen for their ability to cause proliferation and IFN-γ responses of T cells from immune mice. Six unique clones were selected from the second screen for further analysis. The clones encoded part of the coding sequence of glutamine synthetase, transitional endoplasmic reticulum ATPase, elongation factor 1γ, kinesin K-39, repetitive protein A2, and a hypothetical conserved protein. Humans naturally infected with L. chagasi mounted both cellular and antibody responses to these protein Preparations containing multiple antigens may be optimal for immunodiagnosis and protective vaccines against Leishmania

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that glucocorticoids induce peripheral insulin resistance in rodents and humans. Here, we investigated the structural and ultrastructural modifications, as well as the proteins involved in beta-cell function and proliferation, in islets from insulin-resistant rats. Adult male Wistar rats were made insulin resistant by daily administration of dexamethasone (DEX; 1mg/kg, i.p.) for five consecutive days, whilst control (CTL) rats received saline alone. Structure analyses showed a marked hypertrophy of DEX islets with an increase of 1.7-fold in islet mass and of 1.6-fold in islet density compared with CTL islets (P < 0.05). Ultrastructural evaluation of islets revealed an increased amount of secreting organelles, such as endoplasmic reticulum and Golgi apparatus in DEX islets. Mitotic figures were observed in DEX islets at structural and ultrastructural levels. Beta-cell proliferation, evaluated at the immunohistochemical level using anti-PCNA (proliferating cell nuclear antigen), showed an increase in pancreatic beta-cell proliferation of 6.4-fold in DEX islets compared with CTL islets (P < 0.0001). Increases in insulin receptor substrate-2 (IRS-2), phosphorylated-serine-threonine kinase AKT (p-AKT), cyclin D(2) and a decrease in retinoblastoma protein (pRb) levels were observed in DEX islets compared with CTL islets (P < 0.05). Therefore, during the development of insulin resistance, the endocrine pancreas adapts itself increasing beta-cell mass and proliferation, resulting in an amelioration of the functions. The potential mechanisms that underlie these events involve the activation of the IRS-2/AKT pathway and activation of the cell cycle, mediated by cyclin D(2). These adaptations permit the maintenance of glycaemia at near-physiological ranges.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pearl glands are scattered throughout the lamina of developing leaves and rarely found on adult leaves of Piper regnellii (Piperaceae). The pearl gland is a bicellular secretory trichome composed of a short broad basal cell and a spatula-like, semiglobular apical cell. Four different stages of the pearl grand were determined during its ontogenesis: origin, pre-secretory, secretory and post-secretory. During the pre-secretory stage, mitochondria, ribosomes, dictyosomes, rough endoplasmic reticulum, and plastids with electron dense inclusions were present in the cytoplasm of the apical cell. During the secretory stage, the most remarkable characteristics of the apical cell are the proliferation of dictyosomes and their vesicles, rough endoplasmic reticulum, and modified plastids. At this stage, electron-dense oil drops occur in the plastids as well as scattered within the cytoplasm, proteins and polysaccharides are seen in the plastids, vesicles, and vacuoles. Only polysaccharides are present in the periplasmic space, wall cavities, and on the surface of the apical cell. The polysaccharides are one of the main components of the mucilagenous exudate that covers the developing leaf structures. The apical cell of the senescing trichomes undergoes a progressive degeneration of its cellular components, the plastids being the first organelles to undergo lysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports on a study of the zinc iodide-osmium tetroxide method (ZIO) applicability to formaldehyde-glutaraldehyde prefixed extrafloral nectary tissues of Citharexylum mirianthum Cham. (Verbenaceae). The ZIO solution impregnates the dictyosome stacks and adjacent vesicles, smooth endoplasmic reticulum, nuclear envelope, multivesicular bodies, and peroxisomes. The use of this method greatly facilitates the observation and recognition of organelles in each nectary region. it also allows the correlation between structure and function in nectariferous cells. (C) 2001 Harcourt Publishers Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The genus Hymenaea is characterized by a great diversity of secretory structures, but there are no reports of colleters yet. The objectives of this study are to report the occurrence and describe the origin and structure of colleters in Hymenaea stigonocarpa Mart. ex Hayne. Shoot apex samples were collected, fixed, and processed for light microscopy, scanning electron microscopy, and transmission electron microscopy as per usual methods. Colleters occur predominantly on the stipule's adaxial side. These structures are found at the base on a narrow strip, corresponding to the median vein up to half the length of the stipule. When present on the abaxial side, they are concentrated at the base and restricted to the margins. Colleters develop from the protoderm; they are elongate and club-shaped. Their body has no stratification; their surface cells differ from the inner cells only in position and presence of cuticle. Colleter cells have thin walls, dense cytoplasm, large nuclei, many mitochondria, rough endoplasmic reticulum, and abundant dictyosomes. Histochemical tests with Ruthenium red showed pectic compounds in the cytosol. In H. stigonocarpa, colleter arrangement is compatible with the hypothesis that they protect shoot apex. In this species, protection is reinforced by the sheath formed by the stipule pairs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The morphophysiological changes that occur during oocyte primary growth in Serrasalmus spilopleura were studied using ultrastructural cytochemical techniques. In the previtellogenic oocytes endoplasmic reticulum components, Golgi complex cisternae and vesicles, lysosomes, multivesicular bodies and some electron-dense vesicles react to acid phosphatase (AcPase) detection. The endoplasmic reticulum components, Golgi complex cisternae and vesicles also react to osmium tetroxide and potassium iodide impregnation (KI). These structures, except for the Golgi complex cisternae, are strongly contrasted by osmium tetroxide and zinc iodide impregnation (ZIO). Some electron-dense vesicles are ZIO-stained, while microvesicles in the multivesicular bodies and other large isolated cytoplasmic vesicles are contrasted by KI. At primary oocyte growth, the activity of the endomembranous system and the proliferation of membranous organelles are intense. The biosynthetic pathway of the lysosomal proteins such as acid phosphatase, involves the endoplasmic reticulum, Golgi complex, vesicles with inactive hydrolytic enzymes and, finally, the lysosomes. The oocyte endomembranous system have reduction capacity and are involved in the metabolism of rich in SH groups. (c) 2005 Published by Elsevier Ltd.