948 resultados para Electrical system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sin and Pr doped CeO2 and Ce6MoO15 based materials were synthesized by sol-gel method. The structure of the powders were characterized by X-ray diffraction (XRD), Raman spectra, field emission scanning electron microscopy(FE-SEM) and the electrical conductivity of the samples was investigated by AC impedance spectroscopy. By comparing the structure and electrical properties of different systems, it could be concluded that the electrical property of Ce6MoO15 based system is better than that of CeO2 system. The added Mo element resulted in the increase of gain size and improved the grain boundary conductivity notably below 600 degrees C, while the Pr dopant induced the smaller grain size and improved the grain boundary conductivity of the materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of solid state electrolytes, Ce-5.2 RE0.8 MoO15-delta (RE = Y, La, Sm, Gd, Dy, Ho, Er), were synthesized by sol-gel method. Their structures and electrical conductivities were characterized by X-ray Diffraction (XRD), Raman and X-ray Photoelectron Spectroscopy (XPS) and AC impedance spectroscopy, respectively. The results show that the concentrations of oxygen vacancy increased with increasing x and their conductivity were improved. And the cell parameters increase as the radius of RE3+ increases. Because the ionic radius of doped Dy3+ (0.0908 nm) is closed to that of Ce4+ (0.0920 nm), their oxide has minimal cell elastic straining between RE3+ and oxygen vacancy, and the system has the least association enthalpy, thus the oxide Ce-5.2 Dy-0.8 MoO15-delta exhibits a higher conductivity (7.02 x 10(-3) S/cm) and lower activation energy (1.056 eV) compared to the other doped compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We here present a versatile process for the preparation of maghemite/polyaniline (gamma-Fe2O3/ PAn) nanocomposite films with macroscopic processibility, electrical conductivity, and magnetic susceptibility. The gamma-Fe2O3 nanoparticles are coated and the PAn chains are doped by anionic surfactants of omega-methoxypoly(ethylene glycol) phosphate (PEOPA), 4-dodecylbenzenesulfonic acid (DBSA), and 10-camphorsulfonic acid (CSA). Both the coated gamma-Fe2O3 and the doped PAn are soluble in common organic solvents, and casting of the homogeneous solutions gives free-standing nanocomposite films with gamma-Fe2O3 contents up to similar to 50 wt %. The morphology of the gamma-Fe2O3 nanoparticles are characterized by transmission electron microscopy, UV-vis spectroscopy, and X-ray diffractometry. The gamma-Fe2O3/PAn films prepared from chloroform/m-cresol solutions of DBSA-coated gamma-Fe2O3 and CSA-doped PAn are conductive (sigma = 82-237 S/cm) and superpapamagnetic, exhibiting no hysteresis at room temperature. The zero-field-cooled magnetization experiment reveals that the nanocomposite containing 20.8 wt % gamma-Fe2O3 has a blocking temperature (T-b) in the temperature region of 63-83 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new oxides Sm2SrCo2O7, Sm2BaCo2O7 and Gd2SrCo2O7 have been synthesized successfully by solid state reaction mathod. The X-Ray diffraction spectra show that they are all isostructural with Sr3Ti2O7, and Ln(2)SrCo(2)O(7)(Ln=Sm,Gd) crystallized in tetragonal system, Sm2BaCo2O7 in orthrhombic system. The Co-O bonds in CoO2 planes of Ln(2)SrCo(2)O(7) are shorter than those of LnSrCoO(4)(Ln=Sm, Gd), and so their delectrons are more delocalized and their electrical resistivities are smaller. The electrical resistivities versus temperature in the range 300 similar to 1100K showed that the five brides show the characters of weakly localized systems. In the lower temperature range, the magnetic behaviors of Gd2SrCo2O7 and GdSrCoO4 fit Curie-Weiss law well, and the magnetic exchange reaction in CoO2 sublattices of Gd2SrCo2O7 is ferromagnetic, but that of GdSrCoO4 is antiferromagnetic. The other three oxides with Sm3+ showed complex magnetic behaviors which is perhaps related with the complexity of Sm3+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray diffraction and electrical and diamagnetic analyses revealed that the 2223 phase was significantly enhanced by high-valence cation (V5+, Nb5+, Ta5+, etc.) doping in BiSrCaCuO samples. The optimum nominal composition was Bi1.6M0.4Sr2Ca2Cu3 O(y)(M =

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All the members of the solid solution of YSr2-xCaxV3O9-y have the orthorhombic symmetry. Their electrical and magnetic properties have been studied. The magnetic susceptibility and electrical resistivity increase gradually with x. The system shows paramagnetic behavior both at 300 K and at 77 K. It is shown that a change of valence state of vanadium obviously affects the electrical and magnetic properties of the solid solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical and magnetical properties of LaSr(2-x)Ca(x)V3O9 +/- y have been investigated. The compounds are antiferromagnetic. They show a metallic conduction other than semiconductivity. The trivalent and tetravalent vanadium ions coexist in the system. The magnetic susceptibility increases and the resistivity decreases at room temperature with the increase of x value. It is shown that the change of the valency state of vanadium obviously influences the electrical and magnetical properties of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

C.J.Price, D.R.Pugh, N.A.Snooke, J.E.Hunt, M.S.Wilson, Combining Functional and Structural Reasoning for Safety Analysis of Electrical Designs, Knowledge Engineering Review, vol 12:3, pp.271-287, 1997.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computer model has been developed to optimize the performance of a 50kWp photovoltaic system which supplies electrical energy to a dairy farm at Fota Island in Cork Harbour. Optimization of the system involves maximising the efficiency and increasing the performance and reliability of each hardware unit. The model accepts horizontal insolation, ambient temperature, wind speed, wind direction and load demand as inputs. An optimization program uses the computer model to simulate the optimum operating conditions. From this analysis, criteria are established which are used to improve the photovoltaic system operation. This thesis describes the model concepts, the model implementation and the model verification procedures used during development. It also describes the techniques which are used during system optimization. The software, which is written in FORTRAN, is structured in modular units to provide logical and efficient programming. These modular units may also be used in the modelling and optimization of other photovoltaic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this thesis covers four major topics of research related to the grid integration of wave energy. More specifically, the grid impact of a wave farm on the power quality of its local network is investigated. Two estimation methods were developed regarding the flicker level Pst generated by a wave farm in relation to its rated power as well as in relation to the impedance angle ψk of the node in the grid to which it is connected. The electrical design of a typical wave farm design is also studied in terms of minimum rating for three types of costly pieces of equipment, namely the VAr compensator, the submarine cables and the overhead line. The power losses dissipated within the farm's electrical network are also evaluated. The feasibility of transforming a test site into a commercial site of greater rated power is investigated from the perspective of power quality and of cables and overhead line thermal loading. Finally, the generic modelling of ocean devices, referring here to both wave and tidal current devices, is investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – To present key challenges associated with the evolution of system-in-package technologies and present technical work in reliability modeling and embedded test that contributes to these challenges. Design/methodology/approach – Key challenges have been identified from the electronics and integrated MEMS industrial sectors. Solutions to optimising the reliability of a typical assembly process and reducing the cost of production test have been studied through simulation and modelling studies based on technology data released by NXP and in collaboration with EDA tool vendors Coventor and Flomerics. Findings – Characterised models that deliver special and material dependent reliability data that can be used to optimize robustness of SiP assemblies together with results that indicate relative contributions of various structural variables. An initial analytical model for solder ball reliability and a solution for embedding a low cost test for a capacitive RF-MEMS switch identified as an SiP component presenting a key test challenge. Research limitations/implications – Results will contribute to the further development of NXP wafer level system-in-package technology. Limitations are that feedback on the implementation of recommendations and the physical characterisation of the embedded test solution. Originality/value – Both the methodology and associated studies on the structural reliability of an industrial SiP technology are unique. The analytical model for solder ball life is new as is the embedded test solution for the RF-MEMS switch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computational modelling approach integrated with optimisation and statistical methods that can aid the development of reliable and robust electronic packages and systems is presented. The design for reliability methodology is demonstrated for the design of a SiP structure. In this study the focus is on the procedure for representing the uncertainties in the package design parameters, their impact on reliability and robustness of the package design and how these can be included in the design optimisation modelling framework. The analysis of thermo-mechanical behaviour of the package is conducted using non-linear transient finite element simulations. Key system responses of interest, the fatigue life-time of the lead-free solder interconnects and warpage of the package, are predicted and used subsequently for design purposes. The design tasks are to identify the optimal SiP designs by varying several package input parameters so that the reliability and the robustness of the package are improved and in the same time specified performance criteria are also satisfied

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses a reliability based optimisation modelling approach demonstrated for the design of a SiP structure integrated by stacking dies one upon the other. In this investigation the focus is on the strategy for handling the uncertainties in the package design inputs and their implementation into the design optimisation modelling framework. The analysis of fhermo-mechanical behaviour of the package is utilised to predict the fatigue life-time of the lead-free board level solder interconnects and warpage of the package under thermal cycling. The SiP characterisation is obtained through the exploitation of Reduced Order Models (ROM) constructed using high fidelity analysis and Design of Experiments (DoE) methods. The design task is to identify the optimal SiP design specification by varying several package input parameters so that a specified target reliability of the solder joints is achieved and in the same time design requirements and package performance criteria are met

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Curing of encapsulant material in a simplified microelectronics package using an open oven Variable Frequency Microwave (VFM) system is numerically simulated using a coupled solver approach. A numerical framework capable of simulating electromagnetic field distribution within the oven system, plus heat transfer, cure rate, degree of cure and thermally induced stresses within the encapsulant material is presented. The discrete physical processes have been integrated into a fully coupled solution, enabling usefully accurate results to be generated. Numerical results showing the heating and curing of the encapsulant material have been obtained and are presented in this contribution. The requirement to capture inter-process coupling and the variation in dielectric and thermophysical material properties is discussed and illustrated with simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the Design for Reliability modelling of several System-in-Package (SiP) structures developed by NXP and advanced on the basis of Wafer Level Packaging (WLP). Two different types of Wafer Level SiP (WLSiP) are presented and discussed. The main focus is on the modelling approach that has been adopted to investigate and analyse the board level reliability of the presented SiP configurations. Thermo-mechanical non-linear Finite Element Analysis (FEA) is used to analyse the effect of various package design parameters on the reliability of the structures and to identify design trends towards package optimisation. FEA is used also to gain knowledge on moulded wafer shrinkage and related issues during the wafer level fabrication. The paper provides a brief outline and demonstration of a design methodology for reliability driven design optimisation of SiP. The study emphasises the advantages of applying the methodology to address complex design problems where several requirements may exist and uncertainties and interactions between parameters in the design are common.