913 resultados para ENZYME SECRETION
Resumo:
OBJECTIVE: To assess longitudinally the antiviral immune response of T cells from patients with multiple sclerosis (MS) treated with fingolimod (FTY) vs other disease-modifying treatments (DMTs). METHODS: We assessed cellular immune responses specific to influenza virus (FLU), JC virus (JCV), and varicella-zoster virus (VZV) using quantification of interferon-γ secretion by enzyme-linked immunospot in patients with MS on FTY (n = 31), including 2 with herpes zoster (HZ), natalizumab (n = 11), and other DMTs (n = 11). We used viral lysates for FLU and VZV and a pool of peptides for FLU, JCV (VP-1), and VZV (IE63). RESULTS: Besides an expected drop of T cells, we found that, proportionally to the number of CD3(+) T cells, only FTY-treated patients with MS exhibited an increased VZV/IE63-specific T cell response peaking 6 months into treatment, a response that returned to baseline after 12 and 24 months. Two FTY-treated patients developed an HZ 6 months into treatment, coinciding with an absent VZV/IE63-specific T cell response. However, cellular immune responses specific to VZV lysate, JCV, and FLU (lysate and pool of peptide epitopes) were similar between all 3 categories (FTY, natalizumab, and other DMTs) of study patients. CONCLUSIONS: FTY-treated patients with MS exhibit an increased VZV/IE63-specific cellular immune response after 6 months of treatment. FTY-treated patients who develop an HZ are not able to mount such a response, suggesting that a T cell response directed against this viral protein may be key in preventing the occurrence of HZ.
Resumo:
Cytochrome P450 (CYP) enzymes play a pivotal role in the metabolism of many drugs. Inhibition of CYP enzymes usually increases the plasma concentrations of their substrate drugs and can thus alter the safety and efficacy of these drugs. The metabolism of many widely used nonsteroidal antiinflammatory drugs (NSAIDs) as well as the metabolism of the antidepressant venlafaxine is nown to be catalyzed by CYP enzymes. In the present studies, the effect of CYP inhibition on the armacokinetics and pharmacodynamics of NSAIDs and venlafaxine was studied in clinical trials with healthy volunteers and with a crossover design, by using different antifungal agents as CYP inhibitors. The results of these studies demonstrate that the inhibition of CYP enzymes leads to increased concentrations of NSAIDs. In most cases, the exposure to ibuprofen, diclofenac, etoricoxib, and meloxicam was increased 1.5to 2 fold when they were used concomitantly with antifungal agents. CYP2D6 inhibitor, terbinafine, substantially increased the concentration of parent venlafaxine, whereas the concentration of active moiety of venlafaxine (parent drug plus active metabolite) was only slightly increased. Voriconazole, an inhibitor of the minor metabolic pathway of venlafaxine, produced only minor changes in the pharmacokinetics of venlafaxine. These studies show that an evident increase in the concentrations of NSAIDs may be expected, if they are used concomitantly with CYP inhibitors. However, as NSAIDs are generally well tolerated, use of single doses of NSAIDs concomitantly with CYP inhibitors is not likely to adversely affect patient safety, whereas clinical relevance of longterm concomitant use of NSAIDs with CYP inhibitors needs further investigation. CYP2D6 inhibitors considerably affect the pharmacokinetics of venlafaxine, but the clinical significance of this interaction remains unclear.
Resumo:
This report outlines the discovery, the design and development of new compounds, and, structure-activity relationships for this drug category. Updated approaches to planned syntheses of new worthy ACE-inhibitors are also exploited.
Resumo:
The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.
Resumo:
The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.
Resumo:
ELISAs have been applied to pesticide residue analysis due to their high sensitivity and selectivity. However, some ELISAs performance may be affected by matrix components. In this work, ELISA for carbaryl in water samples was checked for interference by naturally occurring fulvic acids. The results suggested that the high fulvic acid concentration (³30 mg L-1) and acidic pH conditions (pH 4.0) interfere with the signal detection decreasing the method sensitivity. A dilution of the samples and adjust to pH 8.0 are appropriate to minimize the matrix interferences in the ELISA method. Good correlation between ELISA and HPLC-DAD results was observed.
Resumo:
The skeleton undergoes continuous turnover throughout life. In women, an increase in bone turnover is pronounced during childhood and puberty and after menopause. Bone turnover can be monitored by measuring biochemical markers of bone resorption and bone formation. Tartrate-resistant acid phosphatase (TRACP) is an enzyme secreted by osteoclasts, macrophages and dendritic cells. The secreted enzyme can be detected from the blood circulation by recently developed immunoassays. In blood circulation, the enzyme exists as two isoforms, TRACP 5a with an intact polypeptide chain and TRACP 5b in which the polypeptide chain consists of two subunits. The 5b form is predominantly secreted by osteoclasts and is thus associated with bone turnover. The secretion of TRACP 5b is not directly related to bone resorption; instead, the levels are shown to be proportional to the number of osteoclasts. Therefore, the combination of TRACP 5b and a marker reflecting bone degradation, such as C-terminal cross-linked telopeptides of type I collagen (CTX), enables a more profound analysis of the changes in bone turnover. In this study, recombinant TRACP 5a-like protein was proteolytically processed into TRACP 5b-like two subunit form. The 5b-like form was more active both as an acid phosphatase and in producing reactive oxygen species, suggesting a possible function for TRACP 5b in osteoclastic bone resorption. Even though both TRACP 5a and 5b were detected in osteoclasts, serum TRACP 5a levels demonstrated no change in response to alendronate treatment of postmenopausal women. However, TRACP 5b levels decreased substantially, demonstrating that alendronate decreases the number of osteoclasts. This was confirmed in human osteoclast cultures, showing that alendronate decreased the number of osteoclats by inducing osteoclast apoptosis, and TRACP 5b was not secreted as an active enzyme from the apoptotic osteoclasts. In peripubertal girls, the highest levels of TRACP 5b and other bone turnover markers were observed at the time of menarche, whereas at the same time the ratio of CTX to TRACP 5b was lowest, indicating the presence of a high number of osteoclasts with decreased resorptive activity. These results support the earlier findings that TRACP 5b is the predominant form of TRACP secreted by osteoclasts. The major source of circulating TRACP 5a remains to be established, but is most likely other cells of the macrophage-monocyte system. The results also suggest that bone turnover can be differentially affected by both osteoclast number and their resorptive activity, and provide further support for the possible clinical use of TRACP 5b as a marker of osteoclast number.
Resumo:
Fungi and bacteria are key agents in plant litter decomposition in freshwater ecosystems. However, the specific roles of these two groups and their interactions during the decomposition process are unclear. We compared the growth and patterns of degradativeenzymes expressed by communities of bacteria and fungi grown separately and in coexistence on Phragmites leaves. The two groups displayed both synergistic and antagonistic interactions. Bacteria grew better together with fungi than alone. In addition, there was a negative effect of bacteria on fungi, which appeared to be caused by suppression of fungal growth and biomass accrual rather than specifically affecting enzyme activity. Fungi growing alone had a high capacity for the decomposition of plant polymers such as lignin, cellulose, and hemicellulose. In contrast, enzyme activities were in general low when bacteria grew alone, and the activity of key enzymes in the degradation of lignin and cellulose (phenol oxidase and cellobiohydrolase) was undetectable in the bacteria-only treatment. Still, biomass-specific activities of most enzymes were higher in bacteria than in fungi. The low total activity and growth of bacteria in the absence of fungi in spite of apparent high enzymatic efficiency during the degradation of many substrates suggest that fungi provide the bacteria with resources that the bacteria were not able to acquire on their own, most probably intermediate decomposition products released by fungi that could be used by bacteria
Resumo:
The inhibition of the enzyme acetylcholinesterase is considered as a strategy for the treatment of Alzheimer's disease, senile dementia, ataxia, and myasthenia gravis. Three lanostane- and two cycloartane-type triterpenes, together with two mulinane-type diterpenes were isolated from petroleum ether extract of the whole shrub of Azorella trifurcata (Gaertn.) Pers. Their effect on the enzyme acetylcholinesterase was assessed as well. In addition, this is the first report of these triterpenes in the genus Azorella.
Resumo:
The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose) and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.
Resumo:
Pothomorphe umbellata (L.) known on Brazil as Caapeba has a number of popular medicinal use, and it has been studied in relation to its pharmacological activity. Peroxidase specific activity (units/mg protein) was evaluated in callus cell culture samples of the P.umbellata, grown in two different MS medium (media 1 and media 2), submitted to 16 hours photoperiod or kept in darkness. Cell growth rate curve showed that the best growth indices were observed when media 2 submitted to the photoperiod regime was used, followed by the same media kept in darkness (stress condition). The results obtained also showed that the cell culture grown under stress conditions (darkness) lead to high content of peroxidase enzyme (an increase of 700% was observed). Kinetic constant values of 3.3 mmol.L-1 and 2,8 sec-1 were obtained for kM and v max,, respectively, using guaiacol as enzyme substrate.
Resumo:
A rapid indirect enzyme-linked immunosorbent assay (ELISA) was developed for measuring antibodies against Anaplasma marginale using a partially soluble antigen prepared from semi-purified initial bodies from erythrocytes with 80.0% of rickettsiaemia. This technique utilized alkaline phosphatase and p-nitrophenyl phosphate as reaction indicators. The high sensitivity (100.0%) was confirmed with sera from 100 calves experimentally-infected with A. marginale. All of these animals showed seroconversion before or at the same time of the first rickettsiaemia or even when it was not detected. Also the elevated specificity (94.0%) was confirmed by the low percentage of cross-reactions with sera from animals experimentally-infected with Babesia bigemina and Babesia bovis (1.4 and 6.6%, respectively). Performances of ELISA and indirect fluorescent antibody test (IFAT) with 324 sera from enzootically stable area did not show statistical difference (P>0.05), since the former showed 96.9% and the latter 97.2% of positive reactions. The advantage of this ELISA is a shorter execution time than others developed until now, allowing more samples to be analyzed.
Resumo:
A rapid indirect enzyme-linked immunosorbent assay (ELISA) was developed for measuring antibodies against Leishmania chagasi using total antigen from lysed promastigotes. Fifty symptomatic mixed breed dogs from a region of high incidence of visceral leishmaniasis in Brazil were examined. The results showed that in the positive animals, diagnosed by cytological examination, the ELISA using protein A assay system (mean optical density ± SD / 2.078 ± 0.631) detected more antibodies than the anti-IgG assay (mean optical density ± SD / 1.008 ± 0.437), while in the negative animals, the results by both systems were similar. These results suggest that the ELISA assay using protein A peroxidase conjugated could be useful to detect early infected animals in endemic areas, and thus help to control the spread of the infection.