966 resultados para EMITTING-DIODE
Resumo:
El programa experimental s’ha portat a terme dins el marc de les activitats del projecte TRUEFOOD, finançat per la UE per als anys 2007-2010. L’objectiu principal d’aquesta activitat ha estat l’avaluació dels continguts en àcid ascòrbic (vitamina C), polifenols totals, àcids fenòlics i flavonoides en mostres de tomàquet i enciam, produïts sota diferents condicions de camp (producció ecològica i convencional). Per aconseguir els resultats s’han utilitzat mètodes analítics basats en tècniques de cromatografia líquida d’alta eficàcia (HPLC) i d’ultra-alta eficàcia (UHPLC) acoblades a sistemes de detecció de diode array (DAD) i espectrometria de masses (MSn). Per a l’àcid ascòrbic, s’ha desenvolupat un mètode ràpid que ha permès la determinació d’aquest compost en diferents matrius vegetals amb el mínim pretractament de les mostres, utilitzant una fase estacionària HILIC (Fluorinated Stationary Phase). Els mètodes desenvolupats d’anàlisi de compostos fenòlics han permès realitzar les anàlisi de forma ràpida, a fi de processar el màxim nombre de mostres per a obtenir resultats representatius. S’ha realitzat una completa caracterització dels extractes de tomàquet i enciam, ampliant el coneixement descrit en la bibliografia sobre la seva composició fenòlica. En el cas de l’enciam, s’ha identificat quatre compostos fenòlics que mai abans han estat descrits i quantificats en aquesta hortalissa. La definició, amb precisió, dels continguts en vitamina C i compostos fenòlics en les mostres analitzades ha permès comparar els efectes de diferents tècniques de cultiu sobre les característiques nutricionals dels vegetals objecte de l’estudi. Els mètodes d’anàlisi desenvolupats i els resultats derivats del projecte seran publicats properament en revistes científiques de reconegut prestigi.
Resumo:
The lanthanide binuclear helicate [Eu(2)(L(C2(CO(2)H)))(3)] is coupled to avidin to yield a luminescent bioconjugate EuB1 (Q = 9.3%, tau((5)D(0)) = 2.17 ms). MALDI/TOF mass spectrometry confirms the covalent binding of the Eu chelate and UV-visible spectroscopy allows one to determine a luminophore/protein ratio equal to 3.2. Bio-affinity assays involving the recognition of a mucin-like protein expressed on human breast cancer MCF-7 cells by a biotinylated monoclonal antibody 5D10 to which EuB1 is attached via avidin-biotin coupling demonstrate that (i) avidin activity is little affected by the coupling reaction and (ii) detection limits obtained by time-resolved (TR) luminescence with EuB1 and a commercial Eu-avidin conjugate are one order of magnitude lower than those of an organic conjugate (FITC-streptavidin). In the second part of the paper, conditions for growing MCF-7 cells in 100-200 microm wide microchannels engraved in PDMS are established; we demonstrate that EuB1 can be applied as effectively on this lab-on-a-chip device for the detection of tumour-associated antigens as on MCF-7 cells grown in normal culture vials. In order to exploit the versatility of the ligand used for self-assembling [Ln(2)(L(C2(CO(2)H)))(3)] helicates, which sensitizes the luminescence of both Eu(III) and Tb(III) ions, a dual on-chip assay is proposed in which estrogen receptors (ERs) and human epidermal growth factor receptors (Her2/neu) can be simultaneously detected on human breast cancer tissue sections. The Ln helicates are coupled to two secondary antibodies: ERs are visualized by red-emitting EuB4 using goat anti-mouse IgG and Her2/neu receptors by green-emitting TbB5 using goat anti-rabbit IgG. The fact that the assay is more than 6 times faster and requires 5 times less reactants than conventional immunohistochemical assays provides essential advantages over conventional immunohistochemistry for future clinical biomarker detection.
Resumo:
A test kit based on living, lyophilized bacterial bioreporters emitting bioluminescence as a response to arsenite and arsenate was applied during a field campaign in six villages across Bangladesh. Bioreporter field measurements of arsenic in groundwater from tube wells were in satisfying agreement with the results of spectroscopic analyses of the same samples conducted in the lab. The practicability of the bioreporter test in terms of logistics and material requirements, suitability for high sample throughput, and waste disposal was much better than that of two commercial chemical test kits that were included as references. The campaigns furthermore demonstrated large local heterogeneity of arsenic in groundwater, underscoring the use of well switching as an effective remedy to avoid high arsenic exposure.
Resumo:
The polar hydroethanolic extract from Selaginella sellowii(SSPHE) has been previously proven active on intracellular amastigotes (in vitro test) and now was tested on hamsters infected with Leishmania (Leishmania) amazonensis (in vivo test). SSPHE suppressed a 100% of the parasite load in the infection site and draining lymph nodes at an intralesional dose of 50 mg/kg/day × 5, which was similar to the results observed in hamsters treated with N-methylglucamine antimonate (Sb) (28 mg/Kg/day × 5). When orally administered, SSPHE (50 mg/kg/day × 20) suppressed 99.2% of the parasite load in infected footpads, while Sb suppressed 98.5%. SSPHE also enhanced the release of nitric oxide through the intralesional route in comparison to Sb. The chemical fingerprint of SSPHE by high-performance liquid chromatography with diode-array detection and tandem mass spectrometry showed the presence of biflavonoids and high molecular weight phenylpropanoid glycosides. These compounds may have a synergistic action in vivo. Histopathological study revealed that the intralesional treatment with SSPHE induced an intense inflammatory infiltrate, composed mainly of mononuclear cells. The present findings reinforce the potential of this natural product as a source of future drug candidates for American cutaneous leishmaniasis.
Resumo:
Reliable information is a crucial factor influencing decision-making and, thus, fitness in all animals. A common source of information comes from inadvertent cues produced by the behavior of conspecifics. Here we use a system of experimental evolution with robots foraging in an arena containing a food source to study how communication strategies can evolve to regulate information provided by such cues. The robots could produce information by emitting blue light, which the other robots could perceive with their cameras. Over the first few generations, the robots quickly evolved to successfully locate the food, while emitting light randomly. This behavior resulted in a high intensity of light near food, which provided social information allowing other robots to more rapidly find the food. Because robots were competing for food, they were quickly selected to conceal this information. However, they never completely ceased to produce information. Detailed analyses revealed that this somewhat surprising result was due to the strength of selection on suppressing information declining concomitantly with the reduction in information content. Accordingly, a stable equilibrium with low information and considerable variation in communicative behaviors was attained by mutation selection. Because a similar coevolutionary process should be common in natural systems, this may explain why communicative strategies are so variable in many animal species.
Resumo:
Radioimmunodetection of tumours with monoclonal antibodies is becoming an established procedure. Positron emission tomography (PET) shows better resolution than normal gamma camera single photon emission tomography and can provide more precise quantitative data. Thus, in the present study, these powerful methods have been combined to perform radioimmuno PET (RI-PET). Monoclonal antibodies directed against carcinoembryonic antigen (CEA) an IgG, its F(ab')2 and a mouse-human chimeric IgG derived from it were labelled with 124I, a positron-emitting radionuclide with a convenient physical half-life of four days. Mice, xenografted with a CEA-producing human colon carcinoma, were injected with the 124I-MAb and the tumours were visualized using PET. The concentrations of 124I in tumour and normal tissue were determined by both PET and direct radioactivity counting of the dissected animals, with very good agreement. To allow PET quantification, a procedure was established to account for the presence of radioactivity during the absorption correction measurement (transmission scan). Comparison of PET and tissue counting indicates that this novel combination of radioimmunolocalization and PET (RI-PET) will provide, in addition to more precise diagnosis, more accurate radiation dosimetry for radioimmunotherapy.
Resumo:
We have recently shown that immunophotodetection of human colon carcinomas in nude mice and in patients is possible by using anti-carcinoembryonic antigen monoclonal antibodies (MAb) coupled to fluorescein. The most common clinical application of photodiagnosis has been for the detection of squamous cell carcinomas (SCC) in the upper respiratory tract, but the free dyes used have a poor tumor selectivity. We selected the known MAb E48 directed against SCC and coupled it to a fluorescent dye: indopentamethinecyanin (indocyanin). This dye has an advantage over fluorescein in that it emits a more penetrating fluorescent red signal at 667 nm after excitation with a laser ray of 640 nm. In vitro, an conjugate with an indocyanin:MAb molar ratio of 2, and an additional trace labeling with 125I, showed more than 80% of binding to cells from the SCC line A431. In vivo, when injected i.v. into nude mice bearing xenografts of the same carcinoma line, the MAb E48-(indocyanin)2 conjugate was almost as efficient as the unconjugated MAb E48 in terms of specific tumor localization: 15% of the injected dose per g of tumor at 24 h after injection and a tumor:overall normal tissue ratio of 6-8. There was no selective tumor localization of an irrelevant IgG1-(indocyanin)2 conjugate. Immunophotodetection of the s.c. SCC xenografts on mice given injections of 100 micrograms of MAb E48-(indocyanin), conjugate (representing 1 microgram of indocyanin) was performed at 24 h. Upon laser irradiation, clearly detectable red fluorescence from the indocyanin-MAb conjugate was observed specifically in the SCC xenografts across the mouse skin. In comparison, injection of 100 micrograms of a MAb E48 coupled to 2 micrograms of fluorescein gave a specific green fluorescence signal in the tumor xenografts, which was detectable, however, only after removing the mouse skin. Injection i.v. of a 15 times higher amount of free indocyanin (15 micrograms) gave a diffuse red fluorescence signal all over the mouse body with no definite increase in intensity in the tumor, indicating a lack of tumor selectivity of the free dye. The results demonstrate the possibility of broadening and improving the efficiency of tumor immunophotodiagnosis by coupling to a MAb directed against SCC, a fluorescent dye absorbing and emitting at higher wavelength than fluorescein, and thus having deeper tissue penetration and lower tissue autofluorescence. Such a demonstration opens the way to a new form of clinical immunophotodiagnosis and possibly to the development of a more specific approach to phototherapy of early bronchial carcinomas.
Resumo:
Intratumoural (i.t.) injection of radio-iododeoxyuridine (IdUrd), a thymidine (dThd) analogue, is envisaged for targeted Auger electron- or beta-radiation therapy of glioblastoma. Here, biodistribution of [(125)I]IdUrd was evaluated 5 hr after i.t. injection in subcutaneous human glioblastoma xenografts LN229 after different intravenous (i.v.) pretreatments with fluorodeoxyuridine (FdUrd). FdUrd is known to block de novo dThd synthesis, thus favouring DNA incorporation of radio-IdUrd. Results showed that pretreatment with 2 mg/kg FdUrd i.v. in 2 fractions 0.5 hr and 1 hr before injection of radio-IdUrd resulted in a mean tumour uptake of 19.8% of injected dose (% ID), representing 65.3% ID/g for tumours of approx. 0.35 g. Tumour uptake of radio-IdUrd in non-pretreated mice was only 4.1% ID. Very low uptake was observed in normal nondividing and dividing tissues with a maximum concentration of 2.9% ID/g measured in spleen. Pretreatment with a higher dose of FdUrd of 10 mg/kg prolonged the increased tumour uptake of radio-IdUrd up to 5 hr. A competition experiment was performed in FdUrd pretreated mice using i.t. co-injection of excess dThd that resulted in very low tumour retention of [(125)I]IdUrd. DNA isolation experiments showed that in the mean >95% of tumour (125)I activity was incorporated in DNA. In conclusion, these results show that close to 20% ID of radio-IdUrd injected i.t. was incorporated in tumour DNA after i.v. pretreatment with clinically relevant doses of FdUrd and that this approach may be further exploited for diffusion and therapy studies with Auger electron- and/or beta-radiation-emitting radio-IdUrd.
Resumo:
This paper proposes a framework to examine business ethical dilemmas andbusiness attitudes towards such dilemmas. Business ethical dilemmas canbe understood as reflecting a contradiction between a socially detrimentalprocess and a self-interested profitable consequence. This representationallows us to distinguish two forms of behavior differing by whetherpriority is put on consequences or on processes. We argue that theseforms imply very different business attitudes towards society:controversial or competitive for the former and aligned or cooperativefor the latter. These attitudes are then analyzed at the discursive level in order to address the question of good faith in businessargumentation, i.e. to which extent are these attitudes consistent withactual business behaviors. We argue that consequential attitudes mostlyinvolve communication and lobbying actions aiming at eluding the dilemma.Therefore, the question of good faith for consequential attitudes liesin the consistency between beliefs and discourse. On the other hand,procedural attitudes acknowledge the dilemma and claim a change of theprocess of behavior. They thus raise the question of the consistencybetween discourses and actual behavior. We apply this processes/consequencesframework to the case of the oil industry s climate change ethical dilemmawhich comes forth as a dilemma between emitting greenhouse gases and making more profits . And we examine the different attitudes of two oilcorporations-BP Amoco and ExxonMobil-towards the dilemma.
Resumo:
Recent studies of relativistic jet sources in the Galaxy, also known as microquasars, have been very useful in trying to understand the accretion/ejection processes that take place near compact objects. However, the number of sources involved in such studies is still small. In an attempt to increase the number of known microquasars we have carried out a search for new Radio Emitting X-ray Binaries (REXBs). These sources are the ones to be observed later with VLBI techniques to unveil their possible microquasar nature. To this end, we have performed a cross-identification between the X-ray ROSAT all sky survey Bright Source Catalog (RBSC) and the radio NRAO VLA Sky Survey (NVSS) catalogs under very restrictive selection criteria for sources with |b|<5 degrees. We have also conducted a deep observational radio and optical study for six of the selected candidates. At the end of this process two of the candidates appear to be promising, and deserve additional observations aimed to confirm their proposed microquasar nature.
Resumo:
Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and can be used to elucidate the physics of relativistic jets. We report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I 61 + 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, which suggests that the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or absorption processes.
Resumo:
Although radiolabelled monoclonal antibodies are useful in tumor imaging, in our opinion their most important role is in the evaluation of the capacity of newly developed monoclonal antibodies to localize in tumors specifically. Intravenous injections of monoclonal antibody fragments, labelled with beta-emitting radionuclides, can completely eradicate large human colon carcinoma xenografts in nude mice whereas this is not achieved by unconjugated monoclonal antibodies. New strategies are being developed to make radioimmunotherapy applicable to carcinoma patients.
Resumo:
We carry out a self-consistent analytical theory of unipolar current and noise properties of metal-semiconductor-metal structures made of highly resistive semiconductors in the presence of an applied bias of arbitrary strength. By including the effects of the diffusion current we succeed in studying the whole range of carrier injection conditions going from low level injection, where the structure behaves as a linear resistor, to high level injection, where the structure behaves as a space charge limited diode. We show that these structures display shot noise at the highest voltages. Remarkably the crossover from Nyquist noise to shot noise exhibits a complicated behavior with increasing current where an initial square root dependence (double thermal noise) is followed by a cubic power law.
Resumo:
he complex refractive index of SiO2 layers containing Si nanoclusters (Si-nc) has been measured by spectroscopic ellipsometry in the range from 1.5 to 5.0 eV. It has been correlated with the amount of Si excess accurately measured by x-ray photoelectron spectroscopy and the nanocluster size determined by energy-filtered transmission electron microscopy. The Si-nc embedded in SiO2 have been produced by a fourfold Si+ ion implantation, providing uniform Si excess aimed at a reliable ellipsometric modeling. The complex refractive index of the Si-nc phase has been calculated by the application of the Bruggeman effective-medium approximation to the composite media. The characteristic resonances of the refractive index and extinction coefficient of bulk Si vanish out in Si-nc. In agreement with theoretical simulations, a significant reduction of the refractive index of Si-nc is observed, in comparison with bulk and amorphous silicon. The knowledge of the optical properties of these composite layers is crucial for the realization of Si-based waveguides and light-emitting devices.
Resumo:
We demonstrate that thickness, optical constants, and details of the multilayer stack, together with the detection setting, strongly influence the photoluminescence spectra of Si nanocrystals embedded in SiO2. Due to multiple reflections of the visible light against the opaque silicon substrate, an interference pattern is built inside the oxide layer, which is responsible for the modifications in the measured spectra. This interference effect is complicated by the depth dependence of (i) the intensity of the excitation laser and (ii) the concentration of the emitting nanocrystals. These variations can give rise to apparent features in the recorded spectra, such as peak shifts, satellite shoulders, and even splittings, which can be mistaken as intrinsic material features. Thus, they can give rise to an erroneous attribution of optical bands or estimate of the average particle size, while they are only optical-geometrical artifacts. We have analyzed these effects as a function of material composition (Si excess fraction) and thickness, and also evaluated how the geometry of the detection setup affects the measurements. To correct the experimental photoluminescence spectra and extract the true spectral shape of the emission from Si nanocrystals, we have developed an algorithm based on a modulation function, which depends on both the multilayer sequence and the experimental configuration. This procedure can be easily extended to other heterogeneous systems.