935 resultados para ELECTROLYTIC LESION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Infection with human papillomavirus (HPV) is associated with uterine cervical intraepithelial neoplasia (CIN) and invasive cancers (ICC). Approximately 80% of ICC cases are diagnosed in under-developed countries. Vaccine development relies on knowledge of HPV genotypes characteristic of LSIL, HSIL and cancer; however, these genotypes remain poorly characterized in many African countries. To contribute to the characterization of HPV genotypes in Northeastern Tanzania, we recruited 215 women from the Reproductive Health Clinic at Kilimanjaro Christian Medical Centre. Cervical scrapes and biopsies were obtained for cytology and HPV DNA detection. RESULTS: 79 out of 215 (36.7%) enrolled participants tested positive for HPV DNA, with a large proportion being multiple infections (74%). The prevalence of HPV infection increased with lesion grade (14% in controls, 67% in CIN1 cases and 88% in CIN2-3). Among ICC cases, 89% had detectable HPV. Overall, 31 HPV genotypes were detected; the three most common HPV genotypes among ICC were HPV16, 35 and 45. In addition to these genotypes, co-infection with HPV18, 31, 33, 52, 58, 68 and 82 was found in 91% of ICC. Among women with CIN2-3, HPV53, 58 and 84/83 were the most common. HPV35, 45, 53/58/59 were the most common among CIN1 cases. CONCLUSIONS: In women with no evidence of cytological abnormalities, the most prevalent genotypes were HPV58 with HPV16, 35, 52, 66 and 73 occurring equally. Although numerical constraints limit inference, findings that 91% of ICC harbor only a small number of HPV genotypes suggests that prevention efforts including vaccine development or adjuvant screening should focus on these genotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decreased activity of the guanine nucleotide regulatory protein (N) of the adenylate cyclase system is present in cell membranes of some patients with pseudohypoparathyrodism (PHP-Ia) whereas others have normal activity of N (PHP-Ib). Low N activity in PHP-Ia results in a decrease in hormone (H)-stimulatable adenylate cyclase in various tissues, which might be due to decreased ability to form an agonist-specific high affinity complex composed of H, receptor (R), and N. To test this hypothesis, we compared beta-adrenergic agonist-specific binding properties in erythrocyte membranes from five patients with PHP-Ia (N = 45% of control), five patients with PHP-Ib (N = 97%), and five control subjects. Competition curves that were generated by increasing concentrations of the beta-agonist isoproterenol competing with [125I]pindolol were shallow (slope factors less than 1) and were computer fit to a two-state model with corresponding high and low affinity for the agonist. The agonist competition curves from the PHP-Ia patients were shifted significantly (P less than 0.02) to the right as a result of a significant (P less than 0.01) decrease in the percent of beta-adrenergic receptors in the high affinity state from 64 +/- 22% in PHP-Ib and 56 +/- 5% in controls to 10 +/- 8% in PHP-Ia. The agonist competition curves were computer fit to a "ternary complex" model for the two-step reaction: H + R + N in equilibrium HR + N in equilibrium HRN. The modeling was consistent with a 60% decrease in the functional concentration of N, and was in good agreement with the biochemically determined decrease in erythrocyte N protein activity. These in vitro findings in erythrocytes taken together with the recent observations that in vivo isoproterenol-stimulated adenylate cyclase activity is decreased in patients with PHP (Carlson, H. E., and A. S. Brickman, 1983, J. Clin. Endocrinol. Metab. 56:1323-1326) are consistent with the notion that N is a bifunctional protein interacting with both R and the adenylate cyclase. It may be that in patients with PHP-Ia a single molecular and genetic defect accounts for both decreased HRN formation and decreased adenylate cyclase activity, whereas in PHP-Ib the biochemical lesion(s) appear not to affect HRN complex formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce "delay activity" between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Focal segmental glomerulosclerosis (FSGS) is a histological lesion with many causes, including inherited genetic defects, with significant proteinuria being the predominant clinical finding at presentation. Mutations in COL4A3 and COL4A4 are known to cause Alport syndrome (AS), thin basement membrane nephropathy, and to result in pathognomonic glomerular basement membrane (GBM) findings. Secondary FSGS is known to develop in classic AS at later stages of the disease. Here, we present seven families with rare or novel variants in COL4A3 or COL4A4 (six with single and one with two heterozygous variants) from a cohort of 70 families with a diagnosis of hereditary FSGS. The predominant clinical finding at diagnosis was proteinuria associated with hematuria. In all seven families, there were individuals with nephrotic-range proteinuria with histologic features of FSGS by light microscopy. In one family, electron microscopy showed thin GBM, but four other families had variable findings inconsistent with classical Alport nephritis. There was no recurrence of disease after kidney transplantation. Families with COL4A3 and COL4A4 variants that segregated with disease represent 10% of our cohort. Thus, COL4A3 and COL4A4 variants should be considered in the interpretation of next-generation sequencing data from such patients. Furthermore, this study illustrates the power of molecular genetic diagnostics in the clarification of renal phenotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Arrhythmia recurrence after cardiac radiofrequency ablation (RFA) for atrial fibrillation has been linked to conduction through discontinuous lesion lines. Intraprocedural visualization and corrective ablation of lesion line discontinuities could decrease postprocedure atrial fibrillation recurrence. Intracardiac acoustic radiation force impulse (ARFI) imaging is a new imaging technique that visualizes RFA lesions by mapping the relative elasticity contrast between compliant-unablated and stiff RFA-treated myocardium. OBJECTIVE: To determine whether intraprocedure ARFI images can identify RFA-treated myocardium in vivo. METHODS: In 8 canines, an electroanatomical mapping-guided intracardiac echo catheter was used to acquire 2-dimensional ARFI images along right atrial ablation lines before and after RFA. ARFI images were acquired during diastole with the myocardium positioned at the ARFI focus (1.5 cm) and parallel to the intracardiac echo transducer for maximal and uniform energy delivery to the tissue. Three reviewers categorized each ARFI image as depicting no lesion, noncontiguous lesion, or contiguous lesion. For comparison, 3 separate reviewers confirmed RFA lesion presence and contiguity on the basis of functional conduction block at the imaging plane location on electroanatomical activation maps. RESULTS: Ten percent of ARFI images were discarded because of motion artifacts. Reviewers of the ARFI images detected RFA-treated sites with high sensitivity (95.7%) and specificity (91.5%). Reviewer identification of contiguous lesions had 75.3% specificity and 47.1% sensitivity. CONCLUSIONS: Intracardiac ARFI imaging was successful in identifying endocardial RFA treatment when specific imaging conditions were maintained. Further advances in ARFI imaging technology would facilitate a wider range of imaging opportunities for clinical lesion evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously shown that intracardiac acoustic radiation force impulse (ARFI) imaging visualizes tissue stiffness changes caused by radiofrequency ablation (RFA). The objectives of this in vivo study were to (1) quantify measured ARFI-induced displacements in RFA lesion and unablated myocardium and (2) calculate the lesion contrast (C) and contrast-to-noise ratio (CNR) in two-dimensional ARFI and conventional intracardiac echo images. In eight canine subjects, an ARFI imaging-electroanatomical mapping system was used to map right atrial ablation lesion sites and guide the acquisition of ARFI images at these sites before and after ablation. Readers of the ARFI images identified lesion sites with high sensitivity (90.2%) and specificity (94.3%) and the average measured ARFI-induced displacements were higher at unablated sites (11.23 ± 1.71 µm) than at ablated sites (6.06 ± 0.94 µm). The average lesion C (0.29 ± 0.33) and CNR (1.83 ± 1.75) were significantly higher for ARFI images than for spatially registered conventional B-mode images (C = -0.03 ± 0.28, CNR = 0.74 ± 0.68).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: In patients with myelomeningocele (MMC), a high number of fractures occur in the paralyzed extremities, affecting mobility and independence. The aims of this retrospective cross-sectional study are to determine the frequency of fractures in our patient cohort and to identify trends and risk factors relevant for such fractures. MATERIALS AND METHODS: Between March 1988 and June 2005, 862 patients with MMC were treated at our hospital. The medical records, surgery reports, and X-rays from these patients were evaluated. RESULTS: During the study period, 11% of the patients (n = 92) suffered one or more fractures. Risk analysis showed that patients with MMC and thoracic-level paralysis had a sixfold higher risk of fracture compared with those with sacral-level paralysis. Femoral-neck z-scores measured by dual-energy X-ray absorptiometry (DEXA) differed significantly according to the level of neurological impairment, with lower z-scores in children with a higher level of lesion. Furthermore, the rate of epiphyseal separation increased noticeably after cast immobilization. Mainly patients who could walk relatively well were affected. CONCLUSIONS: Patients with thoracic-level paralysis represent a group with high fracture risk. According to these results, fracture and epiphyseal injury in patients with MMC should be treated by plaster immobilization. The duration of immobilization should be kept to a minimum (<4 weeks) because of increased risk of secondary fractures. Alternatively, patients with refractures can be treated by surgery, when nonoperative treatment has failed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histopathology is the clinical standard for tissue diagnosis. However, histopathology has several limitations including that it requires tissue processing, which can take 30 minutes or more, and requires a highly trained pathologist to diagnose the tissue. Additionally, the diagnosis is qualitative, and the lack of quantitation leads to possible observer-specific diagnosis. Taken together, it is difficult to diagnose tissue at the point of care using histopathology.

Several clinical situations could benefit from more rapid and automated histological processing, which could reduce the time and the number of steps required between obtaining a fresh tissue specimen and rendering a diagnosis. For example, there is need for rapid detection of residual cancer on the surface of tumor resection specimens during excisional surgeries, which is known as intraoperative tumor margin assessment. Additionally, rapid assessment of biopsy specimens at the point-of-care could enable clinicians to confirm that a suspicious lesion is successfully sampled, thus preventing an unnecessary repeat biopsy procedure. Rapid and low cost histological processing could also be potentially useful in settings lacking the human resources and equipment necessary to perform standard histologic assessment. Lastly, automated interpretation of tissue samples could potentially reduce inter-observer error, particularly in the diagnosis of borderline lesions.

To address these needs, high quality microscopic images of the tissue must be obtained in rapid timeframes, in order for a pathologic assessment to be useful for guiding the intervention. Optical microscopy is a powerful technique to obtain high-resolution images of tissue morphology in real-time at the point of care, without the need for tissue processing. In particular, a number of groups have combined fluorescence microscopy with vital fluorescent stains to visualize micro-anatomical features of thick (i.e. unsectioned or unprocessed) tissue. However, robust methods for segmentation and quantitative analysis of heterogeneous images are essential to enable automated diagnosis. Thus, the goal of this work was to obtain high resolution imaging of tissue morphology through employing fluorescence microscopy and vital fluorescent stains and to develop a quantitative strategy to segment and quantify tissue features in heterogeneous images, such as nuclei and the surrounding stroma, which will enable automated diagnosis of thick tissues.

To achieve these goals, three specific aims were proposed. The first aim was to develop an image processing method that can differentiate nuclei from background tissue heterogeneity and enable automated diagnosis of thick tissue at the point of care. A computational technique called sparse component analysis (SCA) was adapted to isolate features of interest, such as nuclei, from the background. SCA has been used previously in the image processing community for image compression, enhancement, and restoration, but has never been applied to separate distinct tissue types in a heterogeneous image. In combination with a high resolution fluorescence microendoscope (HRME) and a contrast agent acriflavine, the utility of this technique was demonstrated through imaging preclinical sarcoma tumor margins. Acriflavine localizes to the nuclei of cells where it reversibly associates with RNA and DNA. Additionally, acriflavine shows some affinity for collagen and muscle. SCA was adapted to isolate acriflavine positive features or APFs (which correspond to RNA and DNA) from background tissue heterogeneity. The circle transform (CT) was applied to the SCA output to quantify the size and density of overlapping APFs. The sensitivity of the SCA+CT approach to variations in APF size, density and background heterogeneity was demonstrated through simulations. Specifically, SCA+CT achieved the lowest errors for higher contrast ratios and larger APF sizes. When applied to tissue images of excised sarcoma margins, SCA+CT correctly isolated APFs and showed consistently increased density in tumor and tumor + muscle images compared to images containing muscle. Next, variables were quantified from images of resected primary sarcomas and used to optimize a multivariate model. The sensitivity and specificity for differentiating positive from negative ex vivo resected tumor margins was 82% and 75%. The utility of this approach was further tested by imaging the in vivo tumor cavities from 34 mice after resection of a sarcoma with local recurrence as a bench mark. When applied prospectively to images from the tumor cavity, the sensitivity and specificity for differentiating local recurrence was 78% and 82%. The results indicate that SCA+CT can accurately delineate APFs in heterogeneous tissue, which is essential to enable automated and rapid surveillance of tissue pathology.

Two primary challenges were identified in the work in aim 1. First, while SCA can be used to isolate features, such as APFs, from heterogeneous images, its performance is limited by the contrast between APFs and the background. Second, while it is feasible to create mosaics by scanning a sarcoma tumor bed in a mouse, which is on the order of 3-7 mm in any one dimension, it is not feasible to evaluate an entire human surgical margin. Thus, improvements to the microscopic imaging system were made to (1) improve image contrast through rejecting out-of-focus background fluorescence and to (2) increase the field of view (FOV) while maintaining the sub-cellular resolution needed for delineation of nuclei. To address these challenges, a technique called structured illumination microscopy (SIM) was employed in which the entire FOV is illuminated with a defined spatial pattern rather than scanning a focal spot, such as in confocal microscopy.

Thus, the second aim was to improve image contrast and increase the FOV through employing wide-field, non-contact structured illumination microscopy and optimize the segmentation algorithm for new imaging modality. Both image contrast and FOV were increased through the development of a wide-field fluorescence SIM system. Clear improvement in image contrast was seen in structured illumination images compared to uniform illumination images. Additionally, the FOV is over 13X larger than the fluorescence microendoscope used in aim 1. Initial segmentation results of SIM images revealed that SCA is unable to segment large numbers of APFs in the tumor images. Because the FOV of the SIM system is over 13X larger than the FOV of the fluorescence microendoscope, dense collections of APFs commonly seen in tumor images could no longer be sparsely represented, and the fundamental sparsity assumption associated with SCA was no longer met. Thus, an algorithm called maximally stable extremal regions (MSER) was investigated as an alternative approach for APF segmentation in SIM images. MSER was able to accurately segment large numbers of APFs in SIM images of tumor tissue. In addition to optimizing MSER for SIM image segmentation, an optimal frequency of the illumination pattern used in SIM was carefully selected because the image signal to noise ratio (SNR) is dependent on the grid frequency. A grid frequency of 31.7 mm-1 led to the highest SNR and lowest percent error associated with MSER segmentation.

Once MSER was optimized for SIM image segmentation and the optimal grid frequency was selected, a quantitative model was developed to diagnose mouse sarcoma tumor margins that were imaged ex vivo with SIM. Tumor margins were stained with acridine orange (AO) in aim 2 because AO was found to stain the sarcoma tissue more brightly than acriflavine. Both acriflavine and AO are intravital dyes, which have been shown to stain nuclei, skeletal muscle, and collagenous stroma. A tissue-type classification model was developed to differentiate localized regions (75x75 µm) of tumor from skeletal muscle and adipose tissue based on the MSER segmentation output. Specifically, a logistic regression model was used to classify each localized region. The logistic regression model yielded an output in terms of probability (0-100%) that tumor was located within each 75x75 µm region. The model performance was tested using a receiver operator characteristic (ROC) curve analysis that revealed 77% sensitivity and 81% specificity. For margin classification, the whole margin image was divided into localized regions and this tissue-type classification model was applied. In a subset of 6 margins (3 negative, 3 positive), it was shown that with a tumor probability threshold of 50%, 8% of all regions from negative margins exceeded this threshold, while over 17% of all regions exceeded the threshold in the positive margins. Thus, 8% of regions in negative margins were considered false positives. These false positive regions are likely due to the high density of APFs present in normal tissues, which clearly demonstrates a challenge in implementing this automatic algorithm based on AO staining alone.

Thus, the third aim was to improve the specificity of the diagnostic model through leveraging other sources of contrast. Modifications were made to the SIM system to enable fluorescence imaging at a variety of wavelengths. Specifically, the SIM system was modified to enabling imaging of red fluorescent protein (RFP) expressing sarcomas, which were used to delineate the location of tumor cells within each image. Initial analysis of AO stained panels confirmed that there was room for improvement in tumor detection, particularly in regards to false positive regions that were negative for RFP. One approach for improving the specificity of the diagnostic model was to investigate using a fluorophore that was more specific to staining tumor. Specifically, tetracycline was selected because it appeared to specifically stain freshly excised tumor tissue in a matter of minutes, and was non-toxic and stable in solution. Results indicated that tetracycline staining has promise for increasing the specificity of tumor detection in SIM images of a preclinical sarcoma model and further investigation is warranted.

In conclusion, this work presents the development of a combination of tools that is capable of automated segmentation and quantification of micro-anatomical images of thick tissue. When compared to the fluorescence microendoscope, wide-field multispectral fluorescence SIM imaging provided improved image contrast, a larger FOV with comparable resolution, and the ability to image a variety of fluorophores. MSER was an appropriate and rapid approach to segment dense collections of APFs from wide-field SIM images. Variables that reflect the morphology of the tissue, such as the density, size, and shape of nuclei and nucleoli, can be used to automatically diagnose SIM images. The clinical utility of SIM imaging and MSER segmentation to detect microscopic residual disease has been demonstrated by imaging excised preclinical sarcoma margins. Ultimately, this work demonstrates that fluorescence imaging of tissue micro-anatomy combined with a specialized algorithm for delineation and quantification of features is a means for rapid, non-destructive and automated detection of microscopic disease, which could improve cancer management in a variety of clinical scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To report a rare case of atypical fibroxanthoma (AFX) of the bulbar conjunctiva, and to compare it with previously published cases of conjunctival AFX. METHODS: A 37-year-old woman developed a growth on the bulbar conjunctiva of her left eye that increased in size and redness over 4 months and was associated with blurry vision in the left eye, occasional diplopia, irritation of the eye, and increasing tearing. The mass was surgically excised. RESULTS: Slit-lamp examination disclosed a highly vascularized conjunctival lesion with intact lustrous epithelium and a raised nodular edge encroaching on the nasal corneal limbus of the left eye. Pathological examination and immunohistochemistry were diagnostic of AFX. CONCLUSIONS: AFX of the conjunctiva is rare, with this being only the fifth example of this neoplasm reported at this site. Complete surgical excision is the most appropriate treatment option.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifty-one in vivo characterized autonomous single adenomas have been studied for functional parameters in vitro, for gene and protein expression and for pathology, and have been systematically compared to the corresponding extratumoral quiescent tissue. The adenomas were characterized by a high level of iodide trapping that corresponds to a high level of Na+ /iodide symporter gene expression, a high thyroperoxidase mRNA and protein content, and a low H2O2 generation. This explains the iodide metabolism characteristics demonstrated before, ie, the main cause of the "hot" character of the adenomas is their increased iodide transport. The adenomas spontaneously secreted higher amounts of thyroid hormone than the quiescent tissue and in agreement with previous in vivo data, this secretion could be further enhanced by thyrotropin (TSH). Inositol uptake was also increased but there was no spontaneous increase of the generation of inositol phosphates and this metabolism could be further activated by TSH. These positive responses to TSH are in agreement with the properties of TSH-stimulated thyroid cells in vitro and in vivo. They are compatible with the characteristics of mutated TSH receptors whose constitutive activation accounts for the majority of autonomous thyroid adenomas in Europe. The number of cycling cells, as evaluated by MIB-1 immunolabeling was low but increased in comparison with the corresponding quiescent tissue or normal tissue. The cycling cells are observed mainly at the periphery; there was very little apoptosis. Both findings account for the slow growth of these established adenomas. On the other hand, by thyroperoxidase immunohistochemistry, the whole lesion appeared hyperfunctional, which demonstrates a dissociation of mitogenic and functional stimulations. Thyroglobulin, TSH receptor, and E-cadherin mRNA accumulations were not modified in a consistent way, which confirms the near-constitutive expression of the corresponding genes in normal differentiated tissue. On the contrary, early immediate genes expressions (c-myc, NGF1B, egr 1, genes of the fos and jun families) were decreased. This may be explained by the proliferative heterogeneity of the lesion and the previously described short, biphasic expression of these genes when induced by mitogenic agents. All the characteristics of the autonomous adenomas can therefore be explained by the effect of the known activating mutations of genes coding for proteins of the TSH cyclic adenosine monophosphate (cAMP) cascade, all cells being functionally activated while only those at the periphery multiply. The reason of this heterogeneity is unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electrolytic cell for Aluminum production contains molten metal subject to high currents and magnetic flux density. The interaction between these two fields creates electromagnetic forces within the liquid metal and can generate oscillations of the fluid similar to the waves at the free surface of oceans and rivers. The study of this phenomenon requires the simulation of the current density field, of the magnetic flux density field and the solution of the equations of motion of the liquid mass. An attempt to analyze the dynamical behavior of this problem is made by coupling different codes, based on different numerical techniques, in a single tool. The simulations are presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An industrial electrolysis cell used to produce primary aluminium is sensitive to waves at the interface of liquid aluminium and electrolyte. The interface waves are similar to stratified sea layers [1], but the penetrating electric current and the associated magnetic field are intricately involved in the oscillation process, and the observed wave frequencies are shifted from the purely hydrodynamic ones [2]. The interface stability problem is of great practical importance because the electrolytic aluminium production is a major electrical energy consumer, and it is related to environmental pollution rate. The stability analysis was started in [3] and a short summary of the main developments is given in [2]. Important aspects of the multiple mode interaction have been introduced in [4], and a widely used linear friction law first applied in [5]. In [6] a systematic perturbation expansion is developed for the fluid dynamics and electric current problems permitting reduction of the three-dimensional problem to a two dimensional one. The procedure is more generally known as “shallow water approximation” which can be extended for the case of weakly non-linear and dispersive waves. The Boussinesq formulation permits to generalise the problem for non-unidirectionally propagating waves accounting for side walls and for a two fluid layer interface [1]. Attempts to extend the electrolytic cell wave modelling to the weakly nonlinear case have started in [7] where the basic equations are derived, including the nonlinearity and linear dispersion terms. An alternative approach for the nonlinear numerical simulation for an electrolysis cell wave evolution is attempted in [8 and references there], yet, omitting the dispersion terms and without a proper account for the dissipation, the model can predict unstable waves growth only. The present paper contains a generalisation of the previous non linear wave equations [7] by accounting for the turbulent horizontal circulation flows in the two fluid layers. The inclusion of the turbulence model is essential in order to explain the small amplitude self-sustained oscillations of the liquid metal surface observed in real cells, known as “MHD noise”. The fluid dynamic model is coupled to the extended electromagnetic simulation including not only the fluid layers, but the whole bus bar circuit and the ferromagnetic effects [9].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electromagnetic processing of materials (EPM) is one of the most widely practiced and fast growing applications of magnetic and electric forces to fluid flow. EPM is encountered in both industrial processes and laboratory investigations. Applications range in scale from nano-particle manipulation to tonnes of liquid metal treated in the presence of various configurations of magnetic fields. Some of these processes are specifically designed and made possible by the use of the electromagnetic force, like the magnetic levitation of liquid droplets, whilst others involve electric currents essential for electrothermal or electrochemical reasons, for instance, in electrolytic metal production and in induction melting. An insight for the range of established and novel EPM applications can be found in the review presented by Asai [1] in the EPM-2003 conference proceedings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The waves in commercial cells for electrolytic aluminium production originate at the interface between the liquid aluminium and electrolyte, but their effect can spread into the surrounding busbar network as electric current perturbation, and the total magnetic field acquires a time dependent component. The presented model for the wave development accounts for the nonuniform electric current distribution at the cathode and the whole network of the surrounding busbars. The magnetic field is computed for the continuous current in the fluid zones, all busbars and the ferromagnetic construction elements. When the electric current and the associated magnetic field are computed according to the actual electrical circuit and updated for all times, the instability growth rate is significantly affected. The presented numerical model for the wave and electromagnetic interaction demonstrates how different physical coupling factors are affecting the wave development in the electrolysis cells. These small amplitude self-sustained interface oscillations are damped in the presence of intense turbulent viscosity created by the horizontal circulation velocity field. Additionally, the horizontal circulation vortices create a pressure gradient contributing to the deformation of the interface. Instructive examples for the 500 kA demonstration cell are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrodeposition is a widely used technique for the fabrication of high aspect ratio microstructure components. In recent years much research has been focused within this area with an aim to understanding the physics behind the filling of high-aspect ratio vias and trenches on PCB's and in particular how they can be made without the formation of voids in the deposited material. This paper describes some of the fundamental work towards the advancement of numerical models that can predict the electrodeposition process and addresses: i) A novel technique for interface motion based on a variation of a donor-acceptor technique ii) A methodology for the investigation of stress profiles in deposits iii) The implementation of acoustic forces to generate replenishing electrolytic flow circulation in recessed features.