1000 resultados para ELECTRET APPLICATIONS
Resumo:
An overview of ocular implants with therapeutic application potentials is provided. Various types of implants can be used as slow release devices delivering locally the needed drug for an extended period of time. Thus, multiple periocular or intraocular injections of the drug can be circumvented and secondary complications minimized. The various compositions of polymers fulfilling specific delivery goals are described. Several of these implants are undergoing clinical trials while a few are already commercialized. Despite the paramount progress in design, safety and efficacy, the place of these implants in our clinical therapeutic arsenal remains limited. Miniaturization of the implants allowing for their direct injection without the need for a complicated surgery is a necessary development avenue. Particulate systems which can be engineered to target specifically certain cells or tissues are another promising alternative. For ocular diseases affecting the choroid and outer retina, transscleral or intrasscleral implants are gaining momentum.
Resumo:
IMPORTANCE OF THE FIELD: Promising immunotherapeutic agents targeting co-stimulatory pathways are currently being tested in clinical trials. One player in this array of regulatory pathways is the LAG-3/MHC class II axis. The lymphocyte activation gene-3 (LAG-3) is a negative co-stimulatory receptor that modulates T cell homeostasis, proliferation and activation. A recombinant soluble dimeric form of LAG-3 (sLAG-3-Ig, IMP321) shows adjuvant properties and enhances immunogenicity of tumor vaccines. Recent clinical trials produced encouraging results, especially when the human dimeric soluble form of LAG-3 (hLAG-3-Ig) was used in combination with chemotherapy. AREAS COVERED IN THIS REVIEW: The biological relevance of LAG-3 in vivo. Pre-clinical data demonstrating adjuvant properties, as well as the improvement of tumor immunity by sLAG-3-Ig. Recent advances in the clinical development of the therapeutic reagent IMP321, hLAG-3-Ig, for cancer treatment. WHAT THE READER WILL GAIN: This review summarizes preclinical and clinical data on the biological functions of LAG-3. TAKE HOME MESSAGE: The LAG-3 inhibitory pathway is attracting attention, in the light of recent studies demonstrating its role in T cell unresponsiveness, and Treg function after chronic antigen stimulation. As a soluble recombinant dimer, the sLAG-3-Ig protein acts as an adjuvant for therapeutic induction of T cell responses, and may be beneficial to cancer patients when used in combination therapies.
Resumo:
The Universitat Oberta de Catalunya (Open University of Catalonia, UOC) is an online university that makes extensive use of information and communication technologies to provide education. Ever since its establishment in 1995, the UOC has developed and tested methodologies and technological support services to meet the educational challenges posed by its student community and its teaching and management staff. The know-how it has acquired in doing so is the basis on which it has created the Open Apps platform, which is designed to provide access to open source technical applications, information on successful learning and teaching experiences, resources and other solutions, all in a single environment. Open Apps is an open, online catalogue, the content of which is available to all students for learning purposes, all IT professionals for downloading and all teachers for reusing.To contribute to the transfer of knowledge, experience and technology, each of the platform¿s apps comes with full documentation, plus information on cases in which it has been used and related tools. It is hoped that such transfer will lead to the growth of an external partner network, and that this, in turn, will result in improvements to the applications and teaching/learning practices, and in greater scope for collaboration.Open Apps is a strategic project that has arisen from the UOC's commitment to the open access movement and to giving knowledge and technology back to society, as well as its firm belief that sustainability depends on communities of interest.
A Survey on Detection Techniques to Prevent Cross-Site Scripting Attacks on Current Web Applications
Resumo:
Peer-reviewed
Resumo:
In this paper we propose a method for computing JPEG quantization matrices for a given mean square error or PSNR. Then, we employ our method to compute JPEG standard progressive operation mode definition scripts using a quantization approach. Therefore, it is no longer necessary to use a trial and error procedure to obtain a desired PSNR and/or definition script, reducing cost. Firstly, we establish a relationship between a Laplacian source and its uniform quantization error. We apply this model to the coefficients obtained in the discrete cosine transform stage of the JPEG standard. Then, an image may be compressed using the JPEG standard under a global MSE (or PSNR) constraint and a set of local constraints determined by the JPEG standard and visual criteria. Secondly, we study the JPEG standard progressive operation mode from a quantization based approach. A relationship between the measured image quality at a given stage of the coding process and a quantization matrix is found. Thus, the definition script construction problem can be reduced to a quantization problem. Simulations show that our method generates better quantization matrices than the classical method based on scaling the JPEG default quantization matrix. The estimation of PSNR has usually an error smaller than 1 dB. This figure decreases for high PSNR values. Definition scripts may be generated avoiding an excessive number of stages and removing small stages that do not contribute during the decoding process with a noticeable image quality improvement.
Resumo:
Mobile devices have become ubiquitous, allowing the integration of new information from a large range of devices. However, the development of new applications requires a powerful framework which simplifies their construction. JXME is the JXTA implementation for mobile devices using J2ME, its main value being its simplicity when creating peer-to-peer (P2P) applications on limited devices. On that regard, an issue that is becoming veryimportant in the recent times is being able to provide a security baseline to such applications. This paper analyzes the currentstate of security in JXME and proposes a simple security mechanism in order to protect JXME applications against a broad range of vulnerabilities.
Resumo:
In this paper we present a novel mechanism for the protection of dynamic itineraries for mobile agent applications. Itineraries that are decided as the agent goes are essential in complex applications based on mobile agents, but no approach has been presented until now to protect them. We have conceived a cryptographic scheme for shielding dynamic itineraries from tampering, impersonation and disclosure. By using trust strategically, our scheme provides a balanced trade-off between flexibility and security. Our protection scheme has been thought always bearing in mind a feasible implementation, and thus facilitates the development of applications that make use of it. An example application based on a real healthcare scenario is also presented to show its operation.