653 resultados para E-isomers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The precise arraying of functional entities in morphologically well-defined shapes remains one of the key challenges in the processing of organic molecules1. Among various π-conjugated species, pyrene exhibits a set of unique properties, which make it an attractive compound for the utilization in materials science2. In this contribution we report on properties of self-assembled structures prepared from amphiphilic pyrene trimers (Py3) consisting of phosphodiester-linked pyrenes. Depending on the geometry of a pyrene core substitution (1.6-, 1.8-, or 2.7- type, see Scheme), the thermally-controlled self-assembly allows the preparation of supramolecular architectures of different morphologies in a bottom-up approach: two-dimensional (2D) nanosheets3 are formed in case of 1.6- and 2.7-substitution4 whereas one-dimensional (1D) fibers are built from 1.8- substituted isomers. The morphologies of the assemblies are established by AFM and TEM, and the results are further correlated with spectroscopic and scattering data. Two-dimensional assemblies consist of an inner layer of hydrophobic pyrenes, sandwiched between a net of phosphates. Due to the repulsion of the negative charges, the 2D assemblies exist mostly as free-standing sheets. An internal alignment of pyrenes leads to strong exciton coupling with an unprecedented observation (simultaneous development of J- and H-bands from two different electronic transitions). Despite the similarity in spectroscopic properties, the structural parameters of the 2D aggregates drastically depend on the preparation procedure. Under certain conditions extra-large sheets (thickness of 2 nm, aspect ratio area/thickness ~107) in aqueous solution are formed4B. Finally, one-dimensional assemblies are formed as micrometer-long and nanometer-thick fibers. Both, planar and linear structures are intriguing objects for the creation of conductive nanowires that may find interest for applications in supramolecular electronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El ajo (Allium sativum L.) es una de las principales hortalizas estudiadas por sus efectos benéficos para la salud, atribuidos en su mayoría a la riqueza que posee en compuestos organoazufrados. Entre ellos, el ajoeno, presente en preparaciones de ajo añejado en aceite, se destaca por ser uno de los principales responsables de la actividad antiagregante plaquetaria. El objetivo de este trabajo fue validar una metodología analítica para su cuantificación en aceite de ajo. Como este compuesto no se comercializa en el mercado y es necesario disponer de él para su empleo como estándar de referencia, se debió adecuar su síntesis y posterior purificación. Para la síntesis se probaron dos metodologías, obteniéndose mejores resultados con la propuesta de Block et al. Se purificó colectando fracciones a la salida del HPLC (Cromatografía Líquida de Alta Performance), se logró la separación de ambos isómeros y por último se cuantificaron muestras de aceite de ajo, comercializadas en la provincia de Mendoza.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carotenoids were analysed in ca. 1-cm thick subsamples of three laterally time-equivalent sapropels from a west-east transect of the eastern Mediterranean Basin to study euxinic periods during Pliocene sapropel formation. The amount of intact isorenieratene (summed all-trans and cis isomers), ranged from non-detectable at the base and top of a sapropel up to 140 µg/g sediment in the central parts. Isorenieratene accumulation rates at the central and western site are remarkably similar and increase sharply to levels of up to 3.0 mg/m**2/ yr in the central part of the sapropel and then drop to low levels. This pattern indicates an expansion of euxinic conditions reaching into the photic zone, followed by deepening of the chemocline during deposition of this Pliocene sapropel. The sapropel from the easternmost site of the basin, which contains less organic carbon, shows much lower isorenieratene accumulation rates and even absence of isorenieratene in the central part of the sapropel. Ba/Al ratios indicate enhanced palaeoproductivity during sapropel formation, supporting previously proposed models, according to which increased productivity is the driving force for the generation of euxinic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The normal boiling point is a fundamental thermo-physical property, which is important in describing the transition between the vapor and liquid phases. Reliable method which can predict it is of great importance, especially for compounds where there are no experimental data available. In this work, an improved group contribution method, which is second order method, for determination of the normal boiling point of organic compounds based on the Joback functional first order groups with some changes and added some other functional groups was developed by using experimental data for 632 organic components. It could distinguish most of structural isomerism and stereoisomerism, which including the structural, cis- and trans- isomers of organic compounds. First and second order contributions for hydrocarbons and hydrocarbon derivatives containing carbon, hydrogen, oxygen, nitrogen, sulfur, fluorine, chlorine and bromine atoms, are given. The fminsearch mathematical approach from MATLAB software is used in this study to select an optimal collection of functional groups (65 functional groups) and subsequently to develop the model. This is a direct search method that uses the simplex search method of Lagarias et al. The results of the new method are compared to the several currently used methods and are shown to be far more accurate and reliable. The average absolute deviation of normal boiling point predictions for 632 organic compounds is 4.4350 K; and the average absolute relative deviation is 1.1047 %, which is of adequate accuracy for many practical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediments from the Baja California Continental Margin Transect - Sites 474 and 476 - showed small amounts of C2-C8 hydrocarbons and functionalized compounds (alkenes) typical of organic-rich, Recent, cold (<30°C) marine sediments. In contrast, some samples from Sites 477, 478, 479, and Hole 481A in the Guaymas Basin, an active spreading center, showed the characteristics of thermally generated hydrocarbons. These include an increase (sometimes exponential) in amount and diversity of C2-C8 hydrocarbons and a decrease in alkenes in more thermally mature sediments. The results indicate that the injection of basaltic sills has minimal effect on C2-C8 hydrocarbon generation except in the immediate vicinity of the sill. The absence of light hydrocarbons close to the hottest sills suggests that the compounds distill away as they are formed in these areas of very active hydrothermal circulation. A sample of young sediment exposed to very high temperatures (>300°C) from deeper thermal sources at the hottest site, 477, showed a very limited hydrocarbon distribution, including primarily ethane, benzene, and toluene, together with smaller amounts of propane and butane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volatile C1-C7 components in sediments were examined for Japan Trench DSDP Sites 438, 439, 435, 440, 434 and 436, proceeding from west to east. Levels of all components are lowest in the highly fractured sediments of Sites 440 and 434. A number of alkenes, furans, and sulfur compounds were detected in concentrations higher than noted in any other DSDP sediments examined to date. The types, amounts, and specificity of occurrence are similar to those for 1-meter gravity cores we have examined which bear a significant biological imprint. Site 436 shows high levels of saturated and aromatic hydrocarbons, as well as olefins, including traces of dimethycyclopentanes and the highest level of cyclohexene detected in any DSDP sediment we have examined to date. The results from Site 436 were unexpected, considering the low organic-carbon content, absence of biogenic methane, and evidence of an aerobic depositional environment at this site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we demonstrate the utility of amino acid geochronology based on single-foraminiferal tests in Quaternary sediment cores from the Queensland margin, Australia. The large planktonic foraminifer Pulleniatina obliquiloculata is ubiquitous in shelf, slope, and basin sediments of north Queensland as well as pantropical oceans. Fossil tests are resistant to dissolution, and retain substantial concentrations of amino acids (2-4 nmol/mg of shell) over hundreds of thousands of years. Amino acid D and L isomers of aspartic acid (Asp) and glutamic acid (Glu) were separated using reverse phase chromatography, which is sensitive enough to analyze individual foraminifera tests. In all, 462 Pulleniatina tests from 80 horizons in 11 cores exhibit a systematic increase in D/L ratios down core. D/L ratios were determined in 32 samples whose ages are known from AMS 14C analyses. In all cases, the Asp and Glu D/L ratios are concordant with 14C age. D/L ratios of equal-age samples are slightly lower for cores taken from deeper water sites, reflecting the sensitivity of the rate of racemization to bottom water temperature. Beyond the range of 14C dating, previously identified marine oxygen-isotope stage boundaries provide approximate ages of the sediments up to about 500,000 years. For this longer time frame, D/L ratios also vary systematically with isotope-correlated ages. The rate of racemization for Glu and Asp was modeled using power functions. These equations can be used to estimate ages of samples from the Queensland margin extending back at least 500,000 years. This analytical approach provides new opportunities for geochronological control necessary to understand fundamental sedimentary processes affecting a wide range of marine environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hexachlorocyclohexanes (HCHs) are ubiquitous organic pollutants derived from pesticide application. They are subject to long-range transport, persistent in the environment, and capable of accumulation in biota. Shipboard measurements of HCH isomers (a-, b- and g-HCH) in surface seawater and boundary layer atmospheric samples were conducted in the Atlantic and the Southern Ocean in October to December of 2008. SumHCHs concentrations (the sum of a-, g- and b-HCH) in the lower atmosphere ranged from 12 to 37 pg/m**3 (mean: 27 ± 11 pg/m**3) in the Northern Hemisphere (NH), and from 1.5 to 4.0 pg/m**3 (mean: 2.8 ± 1.1 pg/m**3) in the Southern Hemisphere (SH), respectively. Water concentrations were: a-HCH 0.33-47 pg/l, g-HCH 0.02-33 pg/l and b-HCH 0.11-9.5 pg/l. Dissolved HCH concentrations decreased from the North Atlantic to the Southern Ocean, indicating historical use of HCHs in the NH. Spatial distribution showed increasing concentrations from the equator towards North and South latitudes illustrating the concept of cold trapping in high latitudes and less interhemispheric mixing process. In comparison to concentrations measured in 1987-1999/2000, gaseous HCHs were slightly lower, while dissolved HCHs decreased by factor of 2-3 orders of magnitude. Air-water exchange gradients suggested net deposition for a-HCH (mean: 3800 pg/m**2/day) and g-HCH (mean: 2000 pg/m**2/day), whereas b-HCH varied between equilibrium (volatilization: <0-12 pg/m**2/day) and net deposition (range: 6-690 pg/m**2/day). Climate change may significantly accelerate the release of "old" HCHs from continental storage (e.g. soil, vegetation and high mountains) and drive long-range transport from sources to deposition in the open oceans. Biological productivities may interfere with the air-water exchange process as well. Consequently, further investigation is necessary to elucidate the long term trends and the biogeochemical turnover of HCHs in the oceanic environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two newly developed coring devices, the Multi-Autoclave-Corer and the Dynamic Autoclave Piston Corer were deployed in shallow gas hydrate-bearing sediments in the northern Gulf of Mexico during research cruise SO174 (Oct-Nov 2003). For the first time, they enable the retrieval of near-surface sediment cores under ambient pressure. This enables the determination of in situ methane concentrations and amounts of gas hydrate in sediment depths where bottom water temperature and pressure changes most strongly influence gas/hydrate relationships. At seep sites of GC185 (Bush Hill) and the newly discovered sites at GC415, we determined the volume of low-weight hydrocarbons (C1 through C5) from nine pressurized cores via controlled degassing. The resulting in situ methane concentrations vary by two orders of magnitudes between 0.031 and 0.985 mol kg**-1 pore water below the zone of sulfate depletion. This includes dissolved, free, and hydrate-bound CH4. Combined with results from conventional cores, this establishes a variability of methane concentrations in close proximity to seep sites of five orders of magnitude. In total four out of nine pressure cores had CH4 concentrations above equilibrium with gas hydrates. Two of them contain gas hydrate volumes of 15% (GC185) and 18% (GC415) of pore space. The measurements prove that the highest methane concentrations are not necessarily related to the highest advection rates. Brine advection inhibits gas hydrate stability a few centimeters below the sediment surface at the depth of anaerobic oxidation of methane and thus inhibits the storage of enhanced methane volumes. Here, computerized tomography (CT) of the pressure cores detected small amounts of free gas. This finding has major implications for methane distribution, possible consumption, and escape into the bottom water in fluid flow systems related to halokinesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas hydrate samples from various locations in the Gulf of Mexico (GOM) differ considerably in their microstructure. Distinct microstructure characteristics coincide with discrete crystallographic structures, gas compositions and calculated thermodynamic stabilities. The crystallographic structures were established by X-ray diffraction, using both conventional X-ray sources and high-energy synchrotron radiation. The microstructures were examined by cryo-stage Field-Emission Scanning Electron Microscopy (FE-SEM). Good sample preservation was warranted by the low ice fractions shown from quantitative phase analyses. Gas hydrate structure II samples from the Green Canyon in the northern GOM had methane concentrations of 70-80% and up to 30% of C2-C5 of measured hydrocarbons. Hydrocarbons in the crystallographic structure I hydrate from the Chapopote asphalt volcano in the southern GOM was comprised of more than 98% methane. Fairly different microstructures were identified for those different hydrates: Pores measuring 200-400 nm in diameter were present in structure I gas hydrate samples; no such pores but dense crystal surfaces instead were discovered in structure II gas hydrate. The stability of the hydrate samples is discussed regarding gas composition, crystallographic structure and microstructure. Electron microscopic observations showed evidence of gas hydrate and liquid oil co-occurrence on a micrometer scale. That demonstrates that oil has direct contact to gas hydrates when it diffuses through a hydrate matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition (ACEX)) a more than 200 m thick sequence of Paleogene organic carbon (OC)-rich (black shale type) sediments was drilled. Here we present new biomarker data determined in ACEX sediment samples to decipher processes controlling OC accumulation and their paleoenvironmental significance during periods of Paleogene global warmth and proposed increased freshwater discharge in the early Cenozoic. Specific source-related biomarkers including n-alkanes, fatty acids, isoprenoids, carotenoids, hopanes/hopenes, hopanoic acids, aromatic terpenoids, and long-chain alkenones show a high variability of components, derived from marine and terrestrial origin. The distribution of hopanoic acid isomers is dominated by compounds with the biological 17beta(H), 21beta(H) configuration indicating a low level of maturity. On the basis of the biomarker data the terrestrial OC supply was significantly enriched during the late Paleocene and part of the earliest Eocene, whereas increased aquatic contributions and euxinic conditions of variable intensity were determined for the Paleocene-Eocene thermal maximum and Eocene thermal maximum 2 events as well as the middle Eocene time interval. Furthermore, samples from the middle Eocene are characterized by the occurrence of long-chain alkenones, high proportions of lycopane, and high ratios (>0.6) of (n-C35 + lycopane)/n-C31. The occurrence of C37-alkenenones, which were first determined toward the end of the Azolla freshwater event, indicates that the OC becomes more marine in origin during the middle Eocene. Preliminary UK'37- based sea surface temperature (SST) values display a longterm temperature decrease of about 15C during the time interval 49-44.5 Ma (25° to 10°C), coinciding with the global benthic d18O cooling trend after the early Eocene climatic optimum. At about 46 Ma, parallel with onset of ice-rafted debris, SST (interpreted as summer temperatures) decreased to values <15°C. For the late early Miocene a SST of 11°-15°C was determined. Most of the middle Eocene ACEX sediments are characterized by a smooth short-chain n-alkane distribution, which may point to natural oil-type hydrocarbons from leakage of petroleum reservoirs or erosion of related source rocks and redeposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymers of N-substituted glycines (“peptoids”) containing chiral centers at the α position of their side chains can form stable structures in solution. We studied a prototypical peptoid, consisting of five para-substituted (S)-N-(1-phenylethyl)glycine residues, by NMR spectroscopy. Multiple configurational isomers were observed, but because of extensive signal overlap, only the major isomer containing all cis-amide bonds was examined in detail. The NMR data for this molecule, in conjunction with previous CD spectroscopic results, indicate that the major species in methanol is a right-handed helix with cis-amide bonds. The periodicity of the helix is three residues per turn, with a pitch of ≈6 Å. This conformation is similar to that anticipated by computational studies of a chiral peptoid octamer. The helical repeat orients the amide bond chromophores in a manner consistent with the intensity of the CD signal exhibited by this molecule. Many other chiral polypeptoids have similar CD spectra, suggesting that a whole family of peptoids containing chiral side chains is capable of adopting this secondary structure motif. Taken together, our experimental and theoretical studies of the structural properties of chiral peptoids lay the groundwork for the rational design of more complex polypeptoid molecules, with a variety of applications, ranging from nanostructures to nonviral gene delivery systems.