869 resultados para Driving impairment
Resumo:
Fertilization depends on distribution and aggregation patterns of sea urchins which influence gamete contact time and may potentially enhance their vulnerability to ocean acidification. In this study, we conducted fertilization experiments to assess the effects of selected pH scenarios on fertilization success of Strongylocentrotus droebachiensis, from Spitsbergen, Arctic. Acidification was achieved by aerating seawater with different CO2 partial pressures to represent pre-industrial and present conditions (measured ~180-425 µatm) and future acidification scenarios (~550-800, ~1,300, ~2,000 µatm). Fertilization success was defined as the proportion of successful/unsuccessful fertilizations per treatment; eggs were classified according to features of their fertilization envelope (FE), hyaline layer (HL) and achievement of cellular division. The diagnostic findings of specific pathological aberrations were described in detail. We additionally measured intracellular pH changes in unfertilized eggs exposed for 1 h to selected acidification treatments using BCECF/AM. We conclude that (a) acidified conditions increase the proportion of eggs that failed fertilization, (b) acidification may increase the risk of polyspermy due to failures in the FE formation supported by the occasional observation of multiple sperms in the perivitelline space and (c) irregular formation of the embryo may arise due to impaired formation of the HL. The decrease in fertilization success could be also related to the observed changes in intracellular pH at pCO2 ~ 1,000 µatm or higher.
Resumo:
This paper presents the main results of a study on the influence of driving style on fuel consumption and pollutant emissions of diesel passenger car in urban traffic. Driving styles (eco, normal or aggressive) patterns were based on the “eco-driving” criteria. The methodology is based on on-board emission measurements in real urban traffic in the city of Madrid. Five diesel passenger cars, have been tested. Through a statistical analysis, a Dynamic Performance Index was defined for diesel passenger cars. Likewise, the CO, NOX and HC emissions were compared for each driving style for the tested vehicles. Eco-driving reduces by 14% fuel consumption and CO2 emissions, but aggressive driving increase consumption by 40%. Aggressive driving increases NOX emission by more than 40%. CO and HC, show different trends, but being increased in eco-driving style.
Resumo:
The contributions of driver behaviour as well as surrounding infrastructure are decisive on pollutant emissions from vehicles in real traffic situations. This article deals with the preliminary study of the interaction between the dynamic variables recorded in a vehicle (driving pattern) and pollutant emissions produced over a given urban route. It has been established a “dynamic performance index”-DPI, which is calculated from some driving pattern parameters, which in turn depends on traffic congestion level and route characteristics, in order to determine whether the driving has been aggressive, normal or calm. Two passenger cars instrumented with a portable activity measurement system -to record dynamic variables- and on-board emission measurement equipment have been used. This study has shown that smooth driving patterns can reduce up to 80% NOX emissions and up to 20% of fuel in the same route
Resumo:
Decreasing the accidents on highway and urban environments is the main motivation for the research and developing of driving assistance systems, also called ADAS (Advanced Driver Assistance Systems). In recent years, there are many applications of these systems in commercial vehicles: ABS systems, Cruise Control (CC), parking assistance and warning systems (including GPS), among others. However, the implementation of driving assistance systems on the steering wheel is more limited, because of their complexity and sensitivity. This paper is focused in the development, test and implementation of a driver assistance system for controlling the steering wheel in curve zones. This system is divided in two levels: an inner control loop which permits to execute the position and speed target, softening the action over the steering wheel, and a second control outer loop (controlling for fuzzy logic) that sends the reference to the inner loop according the environment and vehicle conditions. The tests have been done in different curves and speeds. The system has been proved in a commercial vehicle with satisfactory results.
Resumo:
Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems. ©2011 by the authors.
Resumo:
One of the current issues of debate in the study of mild cognitive impairment (MCI) is deviations of oscillatory brain responses from normal brain states and its dynamics. This work aims to characterize the differences of power in brain oscillations during the execution of a recognition memory task in MCI subjects in comparison with elderly controls. Magnetoencephalographic (MEG) signals were recorded during a continuous recognition memory task performance. Oscillatory brain activity during the recognition phase of the task was analyzed by wavelet transform in the source space by means of minimum norm algorithm. Both groups obtained a 77% hit ratio. In comparison with healthy controls, MCI subjects showed increased theta (p < 0.001), lower beta reduction (p < 0.001) and decreased alpha and gamma power (p < 0.002 and p < 0.001 respectively) in frontal, temporal and parietal areas during early and late latencies. Our results point towards a dual pattern of activity (increase and decrease) which is indicative of MCI and specific to certain time windows, frequency bands and brain regions. These results could represent two neurophysiological sides of MCI. Characterizing these opposing processes may contribute to the understanding of the disorder.
Resumo:
The default mode network (DMN) has received growing attention in recent years because it seems to be involved in the neuropathology of psychiatric and neurodegenerative disorders such as autism, schizophrenia and Alzheimer Disease. It has been defined as a task negative network, beca use the activity of all its brain regions is increased during the resting state and suspended during external or goal directed tasks.
Resumo:
Brain oscillations are closely correlated with human information processing and fundamental aspects of cognition. Previous literature shows that due to the relation between brain oscillations and memory processes, spectral dynamics during such tasks are good candidates to study and characterize memory related pathologies. Mild cognitive impairment (MCI), defined as a clinical condition characterized by memory impairment and/ or deterioration of additional cognitive domains, is considered a preliminary stage in the dementia process. In consequence, the study of its brain patterns could help to achieve an early diagnosis of Alzheimer Disease.
Resumo:
Alteration of brain communication due to abnormal patterns of synchronization is nowadays one of the most suitable mechanisms for having a better understanding of brain pathologies. Very recently, it has been proved that abnormal changes in both local and long range functional interactions underlie the cognitive deficits associated with different brain disorders. Mild cognitive impairment (MCI) is a state characterized for cognitive dysfunction, such as the memory. The study of the spatial and dynamic alterations in MCI subjects' functional networks could provide important evidences of the brain mechanisms responsible for such impairment.
Resumo:
Alzheimer's disease (AD) is the most common cause of dementia. Over the last few years, a considerable effort has been devoted to exploring new biomarkers. Nevertheless, a better understanding of brain dynamics is still required to optimize therapeutic strategies. In this regard, the characterization of mild cognitive impairment (MCI) is crucial, due to the high conversion rate from MCI to AD. However, only a few studies have focused on the analysis of magnetoencephalographic (MEG) rhythms to characterize AD and MCI. In this study, we assess the ability of several parameters derived from information theory to describe spontaneous MEG activity from 36 AD patients, 18 MCI subjects and 26 controls. Three entropies (Shannon, Tsallis and Rényi entropies), one disequilibrium measure (based on Euclidean distance ED) and three statistical complexities (based on Lopez Ruiz–Mancini–Calbet complexity LMC) were used to estimate the irregularity and statistical complexity of MEG activity. Statistically significant differences between AD patients and controls were obtained with all parameters (p < 0.01). In addition, statistically significant differences between MCI subjects and controls were achieved by ED and LMC (p < 0.05). In order to assess the diagnostic ability of the parameters, a linear discriminant analysis with a leave-one-out cross-validation procedure was applied. The accuracies reached 83.9% and 65.9% to discriminate AD and MCI subjects from controls, respectively. Our findings suggest that MCI subjects exhibit an intermediate pattern of abnormalities between normal aging and AD. Furthermore, the proposed parameters provide a new description of brain dynamics in AD and MCI.
Resumo:
n recent years, the development of advanced driver assistance systems (ADAS) – mainly based on lidar and cameras – has considerably improved the safety of driving in urban environments. These systems provide warning signals for the driver in the case that any unexpected traffic circumstance is detected. The next step is to develop systems capable not only of warning the driver but also of taking over control of the car to avoid a potential collision. In the present communication, a system capable of autonomously avoiding collisions in traffic jam situations is presented. First, a perception system was developed for urban situations—in which not only vehicles have to be considered, but also pedestrians and other non-motor-vehicles (NMV). It comprises a differential global positioning system (DGPS) and wireless communication for vehicle detection, and an ultrasound sensor for NMV detection. Then, the vehicle's actuators – brake and throttle pedals – were modified to permit autonomous control. Finally, a fuzzy logic controller was implemented capable of analyzing the information provided by the perception system and of sending control commands to the vehicle's actuators so as to avoid accidents. The feasibility of the integrated system was tested by mounting it in a commercial vehicle, with the results being encouraging.
Resumo:
Nonlinearly coupled, damped oscillators at 1:1 frequency ratio, one oscillator being driven coherently for efficient excitation, are exemplified by a spherical swing with some phase-mismatch between drive and response. For certain damping range, excitation is found to succeed if it lags behind, but to produce a chaotic attractor if it leads the response. Although a period-doubhng sequence, for damping increasing, leads to the attractor, this is actually born as a hard (as regards amplitude) bifurcation at a zero growth-rate parametric line; as damping decreases, an unstable fixed point crosses an invariant plane to enter as saddle-focus a phase-space domain of physical solutions. A second hard bifurcation occurs at the zero mismatch line, the saddle-focus leaving that domain. Times on the attractor diverge when approaching either fine, leading to exactly one-dimensional and noninvertible limit maps, which are analytically determined.
Resumo:
Previous studies of the dementia continuum have characterized the early disruption of the brain oscillatory activity at the stage of Mild cognitive impairment (MCI). Reduction in power in posterior regions in the alpha band has been one of the landmarks of the Alzheimer Disease accompanied by the anteriorization of the theta band power. However, little is known about the neurophysiological differences between single and multidomain MCI patients.Our goal is to study the differences in oscillatory magnetic activity between amnestic single and multidomain MCI. This will allow us to test whether the effect of the impairment in a single cognitive domain or in a more widespread functional impairment can be reflected in specific neurophysiological profiles.
Resumo:
We investigate how hubs of functional brain networks are modified as a result of mild cognitive impairment (MCI), a condition causing a slight but noticeable decline in cognitive abilities, which sometimes precedes the onset of Alzheimer's disease. We used magnetoencephalography (MEG) to investigate the functional brain networks of a group of patients suffering from MCI and a control group of healthy subjects, during the execution of a short-term memory task. Couplings between brain sites were evaluated using synchronization likelihood, from which a network of functional interdependencies was constructed and the centrality, i.e. importance, of their nodes was quantified. The results showed that, with respect to healthy controls, MCI patients were associated with decreases and increases in hub centrality respectively in occipital and central scalp regions, supporting the hypothesis that MCI modifies functional brain network topology, leading to more random structures.
Resumo:
The neurophysiological changes associated with Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) include an increase in low frequency activity, as measured with electroencephalography or magnetoencephalography (MEG). A relevant property of spectral measures is the alpha peak, which corresponds to the dominant alpha rhythm. Here we studied the spatial distribution of MEG resting state alpha peak frequency and amplitude values in a sample of 27 MCI patients and 24 age-matched healthy controls. Power spectra were reconstructed in source space with linearly constrained minimum variance beamformer. Then, 88 Regions of Interest (ROIs) were defined and an alpha peak per ROI and subject was identified. Statistical analyses were performed at every ROI, accounting for age, sex and educational level. Peak frequency was significantly decreased (p < 0.05) in MCIs in many posterior ROIs. The average peak frequency over all ROIs was 9.68 ± 0.71 Hz for controls and 9.05 ± 0.90 Hz for MCIs and the average normalized amplitude was (2.57 ± 0.59)·10−2 for controls and (2.70 ± 0.49)·10−2 for MCIs. Age and gender were also found to play a role in the alpha peak, since its frequency was higher in females than in males in posterior ROIs and correlated negatively with age in frontal ROIs. Furthermore, we examined the dependence of peak parameters with hippocampal volume, which is a commonly used marker of early structural AD-related damage. Peak frequency was positively correlated with hippocampal volume in many posterior ROIs. Overall, these findings indicate a pathological alpha slowing in MCI.