969 resultados para Dosimeter glasses
Resumo:
Objectives The first objective of this study was to evaluate the radiological impact on relatives and the environment because of outpatient treatment of differentiated thyroid carcinoma with 3.7 and 5.55 GBq of ((131)I)NaI. The second objective was to determine, analyze, and evaluate whole-body radiation dose to caregivers, the production of contaminated solid waste, and the potentiality of radiation dose and surface contamination existing inside patients` households. Methods Twenty patients were treated on an outpatient basis, taking into consideration their acceptable living conditions, interests, and willingness to comply with medical and radiation-safety guidelines. The caregivers themselves, as well as the potentiality of the radiation dose inside patients` residences, were monitored with a thermo-luminescence dosimeter. Surface contamination and contaminated solid wastes were identified and measured by using a Geiger-Muller detector. Results and discussion Twenty-six monitored individuals received accumulated effective radiation doses of less than 1.0 mSv, and only one 2.8 mSv, throughout the 7 days of measurement. The maximum registered value for the potential of radiation dose inside all living areas was 1.30 mSv. The monitored surface contamination inside patients` dwellings showed a mean value of 4.2 Bq/cm(2) for all surfaces found to be contaminated. A total of 2.5l of contaminated solid waste was generated by the patients with 3.33 MBq of all estimated activity. Conclusion This study revealed that the treatment of differentiated thyroid carcinoma with 3.7 and 5.55 GBq of ((131)I)NaI, on an outpatient basis, can be safe when overseen by qualified professionals and with an adapted radiation-protection guideline. Even considering the radioiodine activity level and the dosimetric methodology applied here, negligible human exposure and a nonmeasurable radiological impact to the human environment were found. Nucl Med Commun 30:533-541 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Biocompatible superparamagnetic iron oxide nanoparticles of magnetite coated with dextran were magnetically characterized using the techniques of SQUID (superconducting quantum interference device) magnetometry and ferromagnetic resonance (FMR). The SQUID magnetometry characterization was performed by isothermal measurements under applied magnetic field using the methods of zero-field-cooling (ZFC) and field-cooling (FC). The magnetic behavior of the nanoparticles indicated their superparamagnetic nature and it was assumed that they consisted exclusively of monodomains. The transition to a blocked state was observed at the temperature T(B) = (43 +/- 1) K for frozen ferrofluid and at (52 +/- 1) K for the lyophilized ferrofluid samples. The FMR analysis showed that the derivative peak-to-peak linewidth (Delta H(PP)), gyromagnetic factor (g), number of spins (N(S)), and spin-spin relaxation time (T(2)) were strongly dependent on both temperature and super-exchange interaction. This information is important for possible nanotechnological applications, mainly those which are strongly dependent on the magnetic parameters.
Resumo:
The thermally induced optical nonlinearity in a chlorophyll ethanol solution is examined. A theory is presented which shows good agreement with experiment. The theory models an optically thick but physically thin medium whose only heat transport mechanism is conduction. An average nz was found for the medium which corresponds well with previous results but the thermal medium is shown to be fundamentally different from a Kerr medium.
Resumo:
Laser heating Ar-40/Ar-39 geochronology provides high analytical precision and accuracy, mum-scale spatial resolution. and statistically significant data sets for the study of geological and planetary processes, A newly commissioned Ar-40/Ar-39 laboratory at CPGeo/USP, Sao Paulo, Brazil, equips the Brazilian scientific community with a new powerful tool applicable to the study of geological and cosmochemical processes. Detailed information about laboratory layout, environmental conditions, and instrumentation provides the necessary parameters for the evaluation of the CPGeo/USp Ar-40/Ar-39 suitability to a diverse range of applications. Details about analytical procedures, including mineral separation, irradiation at the IPEN/CNEN reactor at USP, and mass spectrometric analysis enable potential researchers to design the necessary sampling and sample preparation program suitable to the objectives of their study. Finally, the results of calibration tests using Ca and K salts and glasses, international mineral standards, and in-house mineral standards show that the accuracy and precision obtained at the Ar-40/Ar-39 laboratory at CPGeo/USP are comparable to results obtained in the most respected laboratories internationally. The extensive calibration and standardization procedures under-taken ensure that the results of analytical studies carried out in our laboratories will gain immediate international credibility, enabling Brazilian students and scientists to conduct forefront research in earth and planetary sciences.
Resumo:
Physical aging of amorphous anhydrous fructose at temperature 5 degreesC and at 22 degreesC was studied using differential scanning calorimetry (DSC). The dynamic glass transitions temperature, T-g0 for unaged samples was 16 degreesC and 13.3 degreesC for heating rate of 10 degreesC/min and 1 degreesC/min, respectively. The fictive temperature, T-f0 for unaged samples calculated by Richardson and Savill method was 12 degreesC, which is close to the dynamic value obtained from the lower DSC heating rate. The fictive temperature T-f of the aged fructose glasses at temperatures both below and above the transition region was fitted well by a non-exponential decay function (Williams-Watts form). Aging above the transition region (22 degreesC) for 18 d increased both the dynamic glass transition temperature T and the fictive temperature T-f. However, aging below the transition region (5 degreesC) for I d increased the dynamic glass transition temperature T-g but decreased the fictive temperature T-f.
Resumo:
Ultrasonic speed of propagation and attenuation were investigated as a function of absorbed radiation dose in PAG and MAGIC polymer gel dosimeters. Both PAG and MAGIC gel dosimeters displayed a dependence of ultrasonic parameters on absorbed dose with attenuation displaying significant changes in the dose range investigated. The ultrasonic attenuation dose sensitivity at 4 MHz in MAGIC gels was determined to be 4.7 +/- 0.3 dB m(-1) Gy(-1) and for PAG 3.9 +/- 0.3 dB m(-1) Gy(-1). Ultrasonic speed dose sensitivities were 0.178 +/- 0.006 m s(-1) Gy(-1) for MAGIC gel and -0.44 +/- 0.02 m s(-1) Gy(-1) for PAG. Density and compressional elastic modulus were investigated to explain the different sensitivities of ultrasonic speed to radiation for PAG and MAGIC gels. The different sensitivities were found to be due to differences in the compressional elastic modulus as a function of dose for the two formulations. To understand the physical phenomena underlying the increase in ultrasonic attenuation with dose, the viscoelastic properties of the gels were studied. Results suggest that at ultrasonic frequencies, attenuation in polymer gel dosimeters is primarily due to volume viscosity. It is concluded that ultrasonic attenuation significantly increases with absorbed dose. Also, the ultrasonic speed in polymer gel dosimeters is affected by changes in dosimeter elastic modulus that are likely to be a result of polymerization. It is suggested that ultrasound is a sufficiently sensitive technique for polymer gel dosimetry.
Resumo:
The pore structure formation in bentonite, pillared with a mixed sol of silicon and titanium hydroxides and treated subsequently with quaternary ammonium surfactants, is investigated. The surfactant micelles act as a template, similar to their role in MCM41 synthesis. Because both the surfactant micelles and the sol particles are positively charged, it is greatly favorable for them to form meso-phase assembles in the galleries between the clay layers that bear negative charges. Besides, the sol particles do not bond the clay layers strongly as other kinds of pillar precursors do, so that the treatment with surfactants can result in radical structure changes in sol-pillared clays. This allows us to tailor the pore structure of these porous clays by choice of surfactant. The surfactant treatment also results in profound increases in porosity and improvement in thermal stability. Therefore, the product porous clays have great potential to be Used to deal with large molecules or at high operating temperatures. We also found that titanium in these samples is highly dispersed in the silica matrix rather than existing in the form of small particles of pure titania. Such highly dispersed Ti active centers may offer excellent activities for catalytic oxidation reactions such as alkanes into alcohols and ketones.
Resumo:
Ultrasonic absorption in polymer gel dosimeters was investigated. An ultrasonic interferometer was used to study the frequency (f) dependence of the absorption coefficient (alpha) in a polyacrylamide gel dosimeter (PAG) in the frequency range 5-20 MHz. The frequency dependence of ultrasonic absorption deviated from that of an ideal viscous fluid. The presence of relaxation mechanisms was evidenced by the frequency dependence of alpha/f(2) and the dispersion in ultrasonic velocity. It was concluded that absorption in polymer gel dosimeters is due to a number of relaxation processes which may include polymer-solvent interactions as well as relaxation due to motion of polymer side groups. The dependence of ultrasonic absorption on absorbed dose and formulation was also investigated in polymer gel dosimeters as a function of pH and chemical composition. Changes in dosimeter pH and chemical composition resulted in a variation in ultrasonic dose response curves. The observed dependence on pH was considered to be due to pH induced modifications in the radiation yield while changes in chemical composition resulted in differences in polymerisation kinetics. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Sun exposure in childhood is I of the risk factors for developing skin cancer, yet little is known about levels of exposure at this age. This is particularly important in countries with high levels of ultraviolet radiation. (UVR) such as Australia. Among 49 children 3 to 5 years of age attending child care centers, UVR exposure was studied under 4 conditions in a repeated measures design; sunny days, cloudy days, teacher's instruction to stay in the shade, and a health professionals instruction to apply sunscreen. Three different data collection methods were employed: (a) completion of questionnaire or diary by parents and researcher, (b) polysulphone dosimeter readings, and (c) observational audits (video recording). Results of this study indicated that more than half the children had been sunburnt (pink or red) and more than a third had experienced painful sunburn (sore or tender) in the last summer. Most wore short sleeve shirts, short skirts or shorts and cap, that do not provide optimal levels of skin protection. However, sunscreen was applied to all exposed parts before the children went out to the playground. Over the period of I hr (9-10 a.m.) the average amount of time children spent in full sun was 22 min. On sunny days there was more variation across children in the amount of sun exposure received. While the potential amount of UVR exposure for young children during the hour they were outside on a sunny day was 1.45 MED (Minimum Erythemal Dose), they received on average 0.35 MED, which is an insufficient amount to result in an erythemal response on fair skin even without the use of sunscreen.
Resumo:
We propose new theoretical models, which generalize the classical Avrami-Nakamura models. These models are suitable to describe the kinetics of nucleation and growth in transient regime, and/or with overlapping of nucleation and growth. Simulations and predictions were performed for lithium disilicate based on data reported in the literature. One re-examined the limitations of the models currently used to interpret DTA or DSC results, and to extract the relevant kinetic parameters. Glasses and glass-ceramics with molar formulation 0.45SiO2? (0.45-x)MgO?xK2O?0.1(3CaO.P2O5) (0?x?0.090) were prepared, crystallized and studied as potential materials for biomedical applications. Substitution of K+ for Mg2+ were used to prevent devritification on cooling, to adjust the kinetics of crystallization and to modify the in vitro behaviour of resulting biomaterials. The crystallization of the glass frits was studied by DTA, XRD and SEM. Exothermic peaks were detected corresponding to bulk crystallization of whitlockite-type phosphate, Ca9MgK(PO4)7, at approximately 900ºC, and surface crystallization of a predominant forsterite phase (Mg2SiO4) at higher temperatures. XRD also revealed the presence of diopside (CaMgSi2O6 in some samples. The predominant microstructure of the phosphate phase is of the plate-type, seemingly crystallizing by a 2-dimensional growth mechanism. Impedance spectroscopy revealed significant changes in electrical behaviour, associated to crystallization of the phosphate phase. This showed that electrical measurements can be used to study the kinetics of crystallization for cases when DTA or DSC experiments reveal limitations, and to extract estimates of relevant parameters from the dependence of crystallization peak temperature, and its width at half height. In vitro studies of glasses and glass-ceramics in acelular SBF media showed bioactivity and the development of apatite layers The morphology, composition and adhesion of the apatite layer could be changed by substitution of Mg2+ by K+. Apatite layers were deposited on the surface of glass-ceramics of the nominal compositions with x=0 and 0.09, in contact with SBF at 37ºC. The adhesion of the apatite layer was quantified by the scratch test technique, having been related with SBF?s immersion time, with composition and structure of the glass phase, and with the morphology of the crystalline phase of the glass-ceramics. The structure of three glasses (x=0, 0.045 and 0.090) were investigated by MAS-NMR ( 29Si and 31P), showing that the fraction of Q3 structural units increases with the contents of Mg, and that the structure of these glasses includes orthophosphate groups (PO43-) preferentially connected to Ca2+ ions. Mg2+ ions show preference towards the silicate network. Substitution of Mg2+ by K+ allowed one to change the bioactivity. FTIR data revealed octacalcium phosphate precipitation (Ca8H2(PO4)6.5H2O) in the glass without K, while the morphology of the layer acquires the shape of partially superimposed hemispheres, spread over the surface. The glasses with K present a layer of acicular hidroxyapatite, whose crystallinity and needles thickness tend to increase along with K content.
Resumo:
The purpose of this study is to investigate the contribution of psychological variables and scales suggested by Economic Psychology in predicting individuals’ default. Therefore, a sample of 555 individuals completed a self-completion questionnaire, which was composed of psychological variables and scales. By adopting the methodology of the logistic regression, the following psychological and behavioral characteristics were found associated with the group of individuals in default: a) negative dimensions related to money (suffering, inequality and conflict); b) high scores on the self-efficacy scale, probably indicating a greater degree of optimism and over-confidence; c) buyers classified as compulsive; d) individuals who consider it necessary to give gifts to children and friends on special dates, even though many people consider this a luxury; e) problems of self-control identified by individuals who drink an average of more than four glasses of alcoholic beverage a day.
Resumo:
The aging of Portuguese population is characterized by an increase of individuals aged older than 65 years. Preventable visual loss in older persons is an important public health problem. Tests used for vision screening should have a high degree of diagnostic validity confirmed by means of clinical trials. The primary aim of a screening program is the early detection of visual diseases. Between 20% and 50% of older people in the UK have undetected reduced vision and in most cases is correctable. Elderly patients do not receive a systematic eye examination unless a problem arises with their glasses or suspicion vision loss. This study aimed to determine and evaluate the diagnostic accuracy of visual screening tests for detecting vision loss in elderly. Furthermore, it pretends to define the ability to find the subjects affected with vision loss as positive and the subjects not affected with the same disease as negative. The ideal vision screening method should have high sensitivity and specificity for early detection of risk factors. It should be also low cost and easy to implement in all geographic and socioeconomic regions. Sensitivity is the ability of an examination to identify the presence of a given disease and specificity is the ability of the examination to identify the absence of a given disease. It was not an aim of this study to detect abnormalities that affect visual acuity. The aim of this study was to find out what´s the best test for the identification of any vision loss.
Resumo:
Dissertação de Mestrado, Ciências Biomédicas, 18 de Março de 2016, Universidade dos Açores.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Conservação e Restauro Área de especialização – Vidro
Resumo:
An integration of undoped InOx and commercial ITO thin films into laboratory assembled light shutter devices is made. Accordingly, undoped transparent conductive InOx thin films, about 100 nm thick, are deposited by radiofrequency plasma enhanced reactive thermal evaporation (rf-PERTE) of indium teardrops with no intentional heating of the glass substrates. The process of deposition occurs at very low deposition rates (0.1-0.3 nm/s) to establish an optimized reaction between the oxygen plasma and the metal vapor. These films show the following main characteristics: transparency of 87% (wavelength, lambda = 632.8 nm) and sheet resistance of 52 Omega/sq; while on commercial ITO films the transparency was of 92% and sheet resistance of 83 Omega/sq. The InOx thin film surface characterized by AFM shows a uniform grain texture with a root mean square surface roughness of Rq similar to 2.276 nm. In contrast, commercial ITO topography is characterized by two regions: one smoother with Rq similar to 0.973 nm and one with big grains (Rq similar to 3.617 nm). For the shutters assembled using commercial ITO, the light transmission coefficient (Tr) reaches the highest value (Tr-max) of 89% and the lowest (Tr-min) of 1.3% [13], while for the InOx shutters these values are 80.1% and 3.2%, respectively. Regarding the electric field required to achieve 90% of the maximum transmission in the ON state (E-on), the one presented by the devices assembled with commercial ITO coated glasses is 2.41 V/mu m while the one presented by the devices assembled with InOx coated glasses is smaller, 1.77 V/mu m. These results corroborate the device quality that depends on the base materials and fabrication process used. (C) 2014 Elsevier Ltd. All rights reserved.