964 resultados para Distributed algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow cover is an important control in mountain environments and a shift of the snow-free period triggered by climate warming can strongly impact ecosystem dynamics. Changing snow patterns can have severe effects on alpine plant distribution and diversity. It thus becomes urgent to provide spatially explicit assessments of snow cover changes that can be incorporated into correlative or empirical species distribution models (SDMs). Here, we provide for the first time a with a lower overestimation comparison of two physically based snow distribution models (PREVAH and SnowModel) to produce snow cover maps (SCMs) at a fine spatial resolution in a mountain landscape in Austria. SCMs have been evaluated with SPOT-HRVIR images and predictions of snow water equivalent from the two models with ground measurements. Finally, SCMs of the two models have been compared under a climate warming scenario for the end of the century. The predictive performances of PREVAH and SnowModel were similar when validated with the SPOT images. However, the tendency to overestimate snow cover was slightly lower with SnowModel during the accumulation period, whereas it was lower with PREVAH during the melting period. The rate of true positives during the melting period was two times higher on average with SnowModel with a lower overestimation of snow water equivalent. Our results allow for recommending the use of SnowModel in SDMs because it better captures persisting snow patches at the end of the snow season, which is important when modelling the response of species to long-lasting snow cover and evaluating whether they might survive under climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of rockfall characteristics and spatial distribution is fundamental to understand and model the main factors that predispose to failure. In our study we analysed LiDAR point clouds aiming to: (1) detect and characterise single rockfalls; (2) investigate their spatial distribution. To this end, different cluster algorithms were applied: 1a) Nearest Neighbour Clutter Removal (NNCR) in combination with the Expectation?Maximization (EM) in order to separate feature points from clutter; 1b) a density based algorithm (DBSCAN) was applied to isolate the single clusters (i.e. the rockfall events); 2) finally we computed the Ripley's K-function to investigate the global spatial pattern of the extracted rockfalls. The method allowed proper identification and characterization of more than 600 rockfalls occurred on a cliff located in Puigcercos (Catalonia, Spain) during a time span of six months. The spatial distribution of these events proved that rockfall were clustered distributed at a welldefined distance-range. Computations were carried out using R free software for statistical computing and graphics. The understanding of the spatial distribution of precursory rockfalls may shed light on the forecasting of future failures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today’s commercial web sites are under heavy user load and they are expected to be operational and available at all times. Distributed system architectures have been developed to provide a scalable and failure tolerant high availability platform for these web based services. The focus on this thesis was to specify and implement resilient and scalable locally distributed high availability system architecture for a web based service. Theory part concentrates on the fundamental characteristics of distributed systems and presents common scalable high availability server architectures that are used in web based services. In the practical part of the thesis the implemented new system architecture is explained. Practical part also includes two different test cases that were done to test the system's performance capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherent anti-Stokes Raman scattering is the powerful method of laser spectroscopy in which significant successes are achieved. However, the non-linear nature of CARS complicates the analysis of the received spectra. The objective of this Thesis is to develop a new phase retrieval algorithm for CARS. It utilizes the maximum entropy method and the new wavelet approach for spectroscopic background correction of a phase function. The method was developed to be easily automated and used on a large number of spectra of different substances.. The algorithm was successfully tested on experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy [1], Total Variation (TV)based energies [2,3] and more recently non-local means [4]. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm for fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n(2)) and O(1/root epsilon), while existing techniques are in O(1/n) and O(1/epsilon). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes Question Waves, an algorithm that can be applied to social search protocols, such as Asknext or Sixearch. In this model, the queries are propagated through the social network, with faster propagation through more trustable acquaintances. Question Waves uses local information to make decisions and obtain an answer ranking. With Question Waves, the answers that arrive first are the most likely to be relevant, and we computed the correlation of answer relevance with the order of arrival to demonstrate this result. We obtained correlations equivalent to the heuristics that use global knowledge, such as profile similarity among users or the expertise value of an agent. Because Question Waves is compatible with the social search protocol Asknext, it is possible to stop a search when enough relevant answers have been found; additionally, stopping the search early only introduces a minimal risk of not obtaining the best possible answer. Furthermore, Question Waves does not require a re-ranking algorithm because the results arrive sorted

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genus Prunus L. is large and economically important. However, phylogenetic relationships within Prunus at low taxonomic level, particularly in the subgenus Amygdalus L. s.l., remain poorly investigated. This paper attempts to document the evolutionary history of Amygdalus s.l. and establishes a temporal framework, by assembling molecular data from conservative and variable molecular markers. The nuclear s6pdh gene in combination with the plastid trnSG spacer are analyzed with bayesian and maximum likelihood methods. Since previous phylogenetic analysis with these markers lacked resolution, we additionally analyzed 13 nuclear SSR loci with the δµ2 distance, followed by an unweighted pair group method using arithmetic averages algorithm. Our phylogenetic analysis with both sequence and SSR loci confirms the split between sections Amygdalus and Persica, comprising almonds and peaches, respectively. This result is in agreement with biogeographic data showing that each of the two sections is naturally distributed on each side of the Central Asian Massif chain. Using coalescent based estimations, divergence times between the two sections strongly varied when considering sequence data only or combined with SSR. The sequence-only based estimate (5 million years ago) was congruent with the Central Asian Massif orogeny and subsequent climate change. Given the low level of differentiation within the two sections using both marker types, the utility of combining microsatellites and data sequences to address phylogenetic relationships at low taxonomic level within Amygdalus is discussed. The recent evolutionary histories of almond and peach are discussed in view of the domestication processes that arose in these two phenotypically-diverging gene pools: almonds and peaches were domesticated from the Amygdalus s.s. and Persica sections, respectively. Such economically important crops may serve as good model to study divergent domestication process in close genetic pool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a pose-based algorithm to solve the full SLAM problem for an autonomous underwater vehicle (AUV), navigating in an unknown and possibly unstructured environment. The technique incorporate probabilistic scan matching with range scans gathered from a mechanical scanning imaging sonar (MSIS) and the robot dead-reckoning displacements estimated from a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method utilizes two extended Kalman filters (EKF). The first, estimates the local path travelled by the robot while grabbing the scan as well as its uncertainty and provides position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augment state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activated sludge process - the main biological technology usually applied towastewater treatment plants (WWTP) - directly depends on live beings (microorganisms), and therefore on unforeseen changes produced by them. It could be possible to get a good plant operation if the supervisory control system is able to react to the changes and deviations in the system and can take thenecessary actions to restore the system’s performance. These decisions are oftenbased both on physical, chemical, microbiological principles (suitable to bemodelled by conventional control algorithms) and on some knowledge (suitable to be modelled by knowledge-based systems). But one of the key problems in knowledge-based control systems design is the development of an architecture able to manage efficiently the different elements of the process (integrated architecture), to learn from previous cases (spec@c experimental knowledge) and to acquire the domain knowledge (general expert knowledge). These problems increase when the process belongs to an ill-structured domain and is composed of several complex operational units. Therefore, an integrated and distributed AIarchitecture seems to be a good choice. This paper proposes an integrated and distributed supervisory multi-level architecture for the supervision of WWTP, that overcomes some of the main troubles of classical control techniques and those of knowledge-based systems applied to real world systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image segmentation of natural scenes constitutes a major problem in machine vision. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. This approach begins by detecting the main contours of the scene which are later used to guide a concurrent set of growing processes. A previous analysis of the seed pixels permits adjustment of the homogeneity criterion to the region's characteristics during the growing process. Since the high variability of regions representing outdoor scenes makes the classical homogeneity criteria useless, a new homogeneity criterion based on clustering analysis and convex hull construction is proposed. Experimental results have proven the reliability of the proposed approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the X-ray tomography is discussed from the Bayesian statistical viewpoint. The unknown parameters are assumed random variables and as opposite to traditional methods the solution is obtained as a large sample of the distribution of all possible solutions. As an introduction to tomography an inversion formula for Radon transform is presented on a plane. The vastly used filtered backprojection algorithm is derived. The traditional regularization methods are presented sufficiently to ground the Bayesian approach. The measurements are foton counts at the detector pixels. Thus the assumption of a Poisson distributed measurement error is justified. Often the error is assumed Gaussian, altough the electronic noise caused by the measurement device can change the error structure. The assumption of Gaussian measurement error is discussed. In the thesis the use of different prior distributions in X-ray tomography is discussed. Especially in severely ill-posed problems the use of a suitable prior is the main part of the whole solution process. In the empirical part the presented prior distributions are tested using simulated measurements. The effect of different prior distributions produce are shown in the empirical part of the thesis. The use of prior is shown obligatory in case of severely ill-posed problem.