992 resultados para Dissolution rates
Resumo:
Mismatched decoding theory is applied to study the error exponents (both random-coding and expurgated) and achievable rates for bit-interleaved coded modulation (BICM). The gains achieved by constant-composition codes with respect to the the usual random codes are highlighted. © 2013 IEEE.
Resumo:
A two-week trial was conducted to study the effect of feeding rates on heat shock protein levels in larval white sturgeon. The larvae (30 day post hatch, 230 mg initial body weight) were fed a commercial feed (12.6% moisture, 49.5% crude protein. 20.7% Crude fat, and 8.6% ash) at 5, 15. or 25% body weight per clay (BW d(-1)). Liver heat shock proteins (Hsp) were measured before and after the larvae were subjected to a heat shock from 18 to 26 degrees C at 1 degrees C/15 min and maintained at 26 degrees C for 4 h thereafter. Before heat shock, larvae fed 5% BW d(-1) had significantly (P<0.05) lower final body weight, RNA/DNA ratio, whole body lipid and protein content, and Hsp60 and Hsp70 levels but higher protein efficiency ratio, and whole body moisture content than larvae fed the two higher feeding rates. Heat shock significantly induced Hsp60 and Hsp70 levels in the liver of all fish but they were lower in larvae fed the 5% than those fed 15 and 25% BW d(-1). Hsp70 level increased much more than Hsp60 after the heat shock Suggesting that Hsp70 is a more sensitive biomarker under our experimental conditions. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
It is widely accepted that mitochondrial DNA (mtDNA) control region evolves faster than protein encoding genes with few exceptions. In the present study, we sequenced the mitochondrial cytochrome b gene (cyt b) and control region (CR) and compared their rates in 93 specimens representing 67 species of loaches and some related taxa in the Cobitoidea (Order Cypriniformes). The results showed that sequence divergences of the CR were broadly higher than those of the cyt b (about 1.83 times). However, in considering only closely related species, CR sequence evolution was slower than that of cyt b gene (ratio of CR/cyt b is 0.78), a pattern that is found to be very common in Cypriniformes. Combined data of the cyt b and CR were used to estimate the phylogenetic relationship of the Cobitoidea by maximum parsimony, neighbor-joining, and Bayesian methods. With Cyprinus carpio and Danio rerio as outgroups, three analyses identified the same four lineages representing four subfamilies of loaches, with Botiinae on the basal-most clade. The phylogenctic relationship of the Cobitoidea was ((Catostomidae + Gyrinocheilidae) + (Botiinae + (Balitorinae + (Cobitinae + Nemacheilinae)))), which indicated that Sawada's Cobitidae (including Cobitinae and Botiinae) was not monophyletic. Our molecular phylogenetic analyses are in very close agreement with the phylogenetic results based on the morphological data proposed by Nalbant and Bianco, wherein these four subfamilies were elevated to the family level as Botiidae, Balitoridae, Cobitidae, and Nemacheilidae. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Sediment core samples were collected in the largest urban Lake Donghu (Stations I and II) in China, and the activities of Pb-210, Ra-226 and Cs-137 were measured by gamma-ray spectrometry. The sedimentation rates, calculated by 210Pb constant rate of supply (CRS) model, ranged from 0.11 to 0.65 (average 0.39) cm(.)y(-1) at Station I, and from 0.21 to 0.78 (average 0.46) cm(.)y(-1) at Station II. Sedimentation rate calculated by Cs-137 as a time marker was 0.55 cm(.)y(-1) at Station II. Based on the average sedimentation rate, we obtained 769 and 147 t(.)y(-1) for nitrogen and phosphorus retentions in Lake Donghu sediments, respectively.
Resumo:
In this paper, we propose a low complexity and reliable wideband spectrum sensing technique that operates at sub-Nyquist sampling rates. Unlike the majority of other sub-Nyquist spectrum sensing algorithms that rely on the Compressive Sensing (CS) methodology, the introduced method does not entail solving an optimisation problem. It is characterised by simplicity and low computational complexity without compromising the system performance and yet delivers substantial reductions on the operational sampling rates. The reliability guidelines of the devised non-compressive sensing approach are provided and simulations are presented to illustrate its superior performance. © 2013 IEEE.
Resumo:
Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.
Resumo:
The effects of gravity and crystal orientation on the dissolution of GaSb into InSb melt and the recrystallization of InGaSb were investigated under microgravity condition using a Chinese recoverable satellite and under normal gravity condition on earth. To investigate the effect of gravity on the solid/liquid interface and compositional profiles. a numerical simulation was carried out. The InSb crystal melted at 525 degrees C and then a part of GaSb dissolved into the InSb melt during heating to 706 degrees C and this process led to the formation of InGaSb solution. InGaSb solidified during the cooling process. The experimental and calculation results clearly show that the shape of the solid/liquid interface and compositional profiles in the solution were significantly affected by gravity. Under microgravity, as the Ga compositional profiles were uniform in the radial direction. the interfaces were almost parallel. On the contrary, for normal gravity condition, as large amounts of Ga moved up in the upper region due to buoyancy, the dissolved zone broadened towards gravitational direction. Also. during the cooling process, needle crystals of InGaSb started appearing and the value of x of InxGa1-xSb crystals increased with the decrease of temperature. The GaSb with the (111)B plane dissolved into the InSb melt much more than that of the (111)A plane. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
By using three analytical phonon models in quantum wells-the slab model, the guided-mode model, and the improved version of the Huang-Zhu model [Phys. Rev. B 38, 13 377 (1998)], -and the phonon modes in bulk, the energy-loss rates of hot carriers due to the Frohlich potential scattering in GaAs/AlAs multiple quantum wells (MQW's) are calculated and compared to those obtained based on a microscopic dipole superlattice model. In the study, a special emphasis is put on the effects of the phonon models on the hot-carrier relaxation process when taking the hot-phonon effect into account. Our numerical results show that, the calculated energy-loss rates based on the slab model and on the improved Huang-Zhu model are almost the same when ignoring the hot-phonon effect; however, with the hot phonon effect considered, the calculated cooling rate as well as the hot phonon occupation number do depend upon the phonon models to be adopted. Out of the four analytical phonon models investigated, the improved Huang-Zhu model gives the results most close to the microscopic calculation, while the guided-mode model presents the poorest results. For hot electrons with a sheet density around 10(12)/cm(2), the slab model has been found to overestimate the hot-phonon effect by more than 40% compared to the Huang-Zhu model, and about 75% compared to the microscopic calculation in which the phonon dispersion is fully included. Our calculation also indicates that Nash's improved version [J. Lumin. 44, 315 (1989)] is necessary for evaluating the energy-loss rates in quantum wells of wider well width, because Huang-Zhu's original analytical formulas an only approximately orthogonal for optical phonons associated with small in-plane wave numbers. [S0163-1829(99)08919-5].