988 resultados para Discrete Maximum Principles
Resumo:
This thesis addresses the topic of real-time decision making by driverless (autonomous) city vehicles, i.e. their ability to make appropriate driving decisions in non-simplified urban traffic conditions. After addressing the state of research, and explaining the research question, the thesis presents solutions for the subcomponents which are relevant for decision making with respect to information input (World Model), information output (Driving Maneuvers), and the real-time decision making process. TheWorld Model is a software component developed to fulfill the purpose of collecting information from perception and communication subsystems, maintaining an up-to-date view of the vehicle’s environment, and providing the required input information to the Real-Time Decision Making subsystem in a well-defined, and structured way. The real-time decision making process consists of two consecutive stages. While the first decision making stage uses a Petri net to model the safetycritical selection of feasible driving maneuvers, the second stage uses Multiple Criteria Decision Making (MCDM) methods to select the most appropriate driving maneuver, focusing on fulfilling objectives related to efficiency and comfort. The complex task of autonomous driving is subdivided into subtasks, called driving maneuvers, which represent the output (i.e. decision alternatives) of the real-time decision making process. Driving maneuvers are considered as implementations of closed-loop control algorithms, each capable of maneuvering the autonomous vehicle in a specific traffic situation. Experimental tests in both a 3D simulation and real-world experiments attest that the developed approach is suitable to deal with the complexity of real-world urban traffic situations.
Resumo:
The question concerning what makes for good BPM is often raised. A recent call from Paul Harmon on the BPTrends Discussion LinkedIN Group for key issues in BPM received 189 answers within two months, with additional answers still appearing. I have teamed up with a number of BPM researchers and practitioners to bring together our joint experience in a BPM workshop at the University in Liechtenstein in 2013, where we developed ten principles of good BPM, later published in Business Process Management Journal (vom Brocke et al., 2014). The paper, which has received considerable attention in academia, was ranked the journal’s most downloaded paper the month it was published. Slides on Slideshare that provide a brief summary of the paper have been accessed more than 3,000 times since they were first put online in March 2014. Given the importance of the topic–what makes for good BPM–and the positive response to the ten principles, I wrote this note with the co-authors of the original BPMJ paper to outline the ten principles and illustrate how to use them in practice. We invite all readers to engage in this discussion via any channel they find appropriate.
Principles in the design of multiphase experiments with a later laboratory phase: Orthogonal designs
Resumo:
Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in ‘real-world’ environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why.
Resumo:
In 2012, Professor Ian Fletcher (United Kingdom) and Professor Bob Wessels (The Netherlands) presented a Report to the American Law Institute and the International Insolvency Institute entitled Transnational Insolvency: Global Principles for Cooperation in International Insolvency Cases (“Global Principles”). This followed their appointment as Joint Reporters to investigate whether the essential provisions of the American Law Institute Principles of Cooperation among the North American Free Trade Agreement Countries with their annexed Guidelines Applicable to Court-to-Court Communication in Cross-border Cases may, with certain necessary modifications, be acceptable for use by jurisdictions across the world. This article comments on the Global Principles from the perspective of a jurisdiction which has adopted the UNCITRAL Model Law on Cross-border Insolvency (“Model Law”). In 2008, Australia enacted a standalone statute, the Cross-border Insolvency Act 2008 (Cth) to which is annexed the Model Law. In that process, it made minimal changes to the Model Law text. Against the background of the 2008 Act, related procedural laws as well as Australia’s general insolvency statutes and recent cross-border insolvency jurisprudence, this article comments on the potential relevance of the Transnational Insolvency Report as a point of reference for Australian courts and insolvency administrators when addressing international insolvency cases. By comparing the Global Principles with the Model Law as closely adopted in Australia, this analysis is a resource for other Model Law jurisdictions when considering the potential relevance of the Global Principles for their own international insolvency practice.
Resumo:
Though popular, concepts such as Toffler's 'prosumer' (1970; 1980; 1990) are inherently limited in their ability to accurately describe the makeup and dynamics of current co-creative environments, from fundamentally non-profit initiatives like the Wikipedia to user-industry partnerships that engage in crowdsourcing and the development of collective intelligence. Instead, the success or failure of such projects can be understood best if the traditional producer/consumer divide is dissolved, allowing for the emergence of the produser (Bruns, 2008). A close investigation of leading spaces for produsage makes it possible to extract the key principles which underpin and guide such content co-creation, and to identify how innovative pro-am partnerships between commercial entities and user communities might be structured in order to maximise the benefits that both sides will be able to draw from such collaboration. This chapter will outline these principles, and point to successes and failures in applying them to pro- am initiatives.
Resumo:
Partial shading and rapidly changing irradiance conditions significantly impact on the performance of photovoltaic (PV) systems. These impacts are particularly severe in tropical regions where the climatic conditions result in very large and rapid changes in irradiance. In this paper, a hybrid maximum power point (MPP) tracking (MPPT) technique for PV systems operating under partially shaded conditions witapid irradiance change is proposed. It combines a conventional MPPT and an artificial neural network (ANN)-based MPPT. A low cost method is proposed to predict the global MPP region when expensive irradiance sensors are not available or are not justifiable for cost reasons. It samples the operating point on the stairs of I–V curve and uses a combination of the measured current value at each stair to predict the global MPP region. The conventional MPPT is then used to search within the classified region to get the global MPP. The effectiveness of the proposed MPPT is demonstrated using both simulations and an experimental setup. Experimental comparisons with four existing MPPTs are performed. The results show that the proposed MPPT produces more energy than the other techniques and can effectively track the global MPP with a fast tracking speed under various shading patterns.
Resumo:
Only some of the information contained in a medical record will be useful to the prediction of patient outcome. We describe a novel method for selecting those outcome predictors which allow us to reliably discriminate between adverse and benign end results. Using the area under the receiver operating characteristic as a nonparametric measure of discrimination, we show how to calculate the maximum discrimination attainable with a given set of discrete valued features. This upper limit forms the basis of our feature selection algorithm. We use the algorithm to select features (from maternity records) relevant to the prediction of failure to progress in labour. The results of this analysis motivate investigation of those predictors of failure to progress relevant to parous and nulliparous sub-populations.