842 resultados para Dirac brackets
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O presente estudo é uma reflexão crítica sobre um estágio realizado para pensar o dispositivo Oficina na Atenção Psicossocial (CAPS), levantando, a partir da teoria psicanalítica lacaniana, questões que permitiram desenvolver um trabalho sobre o laço social de Lacan para refletir a posição de estagiários e usuários dentro da oficina e problematizar a melhor maneira de trabalhar quando tratamos de sujeitos constituídos pela foraclusão. A forma de trabalhar o sofrimento mental também é discutida a partir da clínica ampliada, que coloca a doença entre parênteses para enxergar o sujeito. A criação de uma oficina, destinada a sujeitos constituídos pela foraclusão, trabalha com a hipótese de reestruturação psíquica através da criação artística. Funcionaria como delírio para a saída do desmoronamento foraclusivo e na diminuição do gozoOutro. Considera-se a dimensão da enunciação, sempre atenta ao surgimento de significantes, com o objetivo de dar maior suporte aos usuários da instituição. O Dispositivo Oficina seria o lugar onde se realizaria esta importante forma de subjetivação.
Resumo:
Diante das diferenças existentes nas características das bases dos braquetes usados atualmente, objetivou-se neste trabalho comparar entre si três tipos de bases de braquetes metálicos (Monobloc, Equilibrium e Dynalock). Foram utilizados 36 pré-molares humanos, divididos em 3 grupos de 12 dentes. Os dentes foram incluídos em troquéis com gesso pedra tipo IV e posicionados com suas faces vestibulares perpendiculares à base do troquel. Todos os braquetes foram colados com o compósito Concise Ortodôntico e submetidos ao ensaio de cisalhamento em uma Máquina Universal com uma velocidade de 0,5 mm por minuto. O braquete Monobloc obteve o maior valor médio de resistência adesiva (x = 28,19 Kgf/cm²), sendo superior estatisticamente aos braquetes Equilibrium (x = 18,07 Kgf/cm²) e Dynalock (x = 18,24 Kgf/cm²). em relação ao ARI (Índice de Remanescente Resinoso), não foi encontrada diferença estatística entre os braquetes testados.
Resumo:
OBJETIVO: o objetivo deste trabalho foi avaliar a influência do tipo de tratamento superficial da porcelana na resistência adesiva da colagem de braquetes ortodônticos e o modo de fratura após a descolagem. METODOLOGIA:foram confeccionados 80 corpos-de-prova de porcelana, divididos em quatro grupos (n = 18) de acordo com os diferentes tratamentos de superfície: (G1) ponta diamantada; (G2) ponta diamantada e silano; (G3) ácido hidrofluorídrico e (G4) ácido hidrofluorídrico e silano. Após o preparo das superfícies, braquetes Edgewise (Morelli) foram colados com resina (Transbond XT, 3M) e submetidos ao teste de cisalhamento. Os resultados foram avaliados estatisticamente pelo teste de Kruskal-Wallis. RESULTADO: o grupo G1 apresentou uma média de resistência de 3,35, o G2 3,97, o G3 2,56 e o G4 3,10. CONCLUSÃO: constatou-se que não houve diferença estatisticamente significativa na resistência adesiva do braquete entre os tipos de tratamentos estudados (p > 0,05) e os modos de fratura ocorreram, em sua grande maioria, na interface braquete/resina. Este estudo indica que todos os tipos de tratamentos apresentados são eficientes para a colagem.
Resumo:
We derive Virasoro constraints for the zero momentum part of the QCD-like partition functions in the sector of topological charge v. The constraints depend on the topological charge only through the combination N-f +betav/2 where the value of the Dyson index beta is determined by the reality type of the fermions. This duality between flavor and topology is inherited by the small-mass expansion of the partition function and all spectral sum rules of inverse powers of the eigenvalues of the Dirac operator. For the special case beta =2 but arbitrary topological charge the Virasoro constraints are solved uniquely by a generalized Kontsevich model with the potential V(X) = 1/X.
Resumo:
The utility of lattice discretization technique is demonstrated for solving nonrelativistic quantum scattering problems and specially for the treatment of ultraviolet divergences in these problems with some potentials singular at the origin in two- and three-space dimensions. This shows that the lattice discretization technique could be a useful tool for the numerical solution of scattering problems in general. The approach is illustrated in the case of the Dirac delta function potential.
Resumo:
A relativistic treatment of the deuteron and its observables based on a two-body Dirac (Breit) equation, with phenomenological interactions, associated to one-boson exchanges with cutoff masses, is presented. The 16-component wave function for the deuteron (J(pi) = 1+) solution contains four independent radial functions which obey a system of four coupled differential equations of first order. This radial system is numerically integrated, from infinity to the origin, by fixing the value of the deuteron binding energy and using appropriate boundary conditions at infinity. Specific examples of mixtures containing scalar, pseudoscalar and vector like terms are discussed in some detail and several observables of the deuteron are calculated. Our treatment differs from more conventional ones in that nonrelativistic reductions of the order c-2 are not used.
Resumo:
This work is a natural continuation of our recent study in quantizing relativistic particles. There it was demonstrated that, by applying a consistent quantization scheme to the classical model of a spinless relativistic particle as well as to the Berezin-Marinov model of a 3 + 1 Dirac particle, it is possible to obtain a consistent relativistic quantum mechanics of such particles. In the present paper, we apply a similar approach to the problem of quantizing the massive 2 + 1 Dirac particle. However, we stress that such a problem differs in a nontrivial way from the one in 3 + 1 dimensions. The point is that in 2 + 1 dimensions each spin polarization describes different fermion species. Technically this fact manifests itself through the presence of a bifermionic constant and of a bifermionic first-class constraint. In particular, this constraint does not admit a conjugate gauge condition at the classical level. The quantization problem in 2 + 1 dimensions is also interesting from the physical viewpoint (e.g., anyons). In order to quantize the model, we first derive a classical formulation in an effective phase space, restricted by constraints and gauges. Then the condition of preservation of the classical symmetries allows us to realize the operator algebra in an unambiguous way and construct an appropriate Hilbert space. The physical sector of the constructed quantum mechanics contains spin-1/2 particles and antiparticles without an infinite number of negative-energy levels, and exactly reproduces the one-particle sector of the 2 + 1 quantum theory of a spinor field.
Resumo:
The helicity flip of a spin-1/2 Dirac particle interacting gravitationally with a scalar field is analyzed in the context of linearized quantum gravity. It is shown that massive fermions may have their helicity flipped by gravity, in opposition to massless fermions which preserve their helicity.
Resumo:
Recently, the Hamilton-Jacobi formulation for first-order constrained systems has been developed. In such formalism the equations of motion are written as total differential equations in many variables. We generalize the Hamilton-Jacobi formulation for singular systems with second-order Lagrangians and apply this new formulation to Podolsky electrodynamics, comparing with the results obtained through Dirac's method.
Resumo:
In this brief article we discuss spin-polarization operators and spin-polarization states of 2 + 1 massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We stress that in particular the use of such a representation allows us to introduce the conserved covariant spin operator in the 2 + 1 field theory. Another advantage of this representation is related to the pseudoclassical limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2 + 1 dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge condition, is just the covariant operator previously introduced in the quantum theory.
Resumo:
In this work the independent particle model formulation is studied as a mean-field approximation of gauge theories using the path integral approach in the framework of quantum electrodynamics in 1 + 1 dimensions. It is shown how a mean-field approximation scheme can be applied to fit an effective potential to an independent particle model, building a straightforward relation between the model and the associated gauge field theory. An example is made considering the problem of massive Dirac fermions on a line, the so called massive Schwinger model. An interesting result is found, indicating a behaviour of screening of the charges in the relativistic limit of strong coupling. A forthcoming application of the method developed to confining potentials in independent quark models for QCD is in view and is briefly discussed.
Resumo:
Relativistic confining potential models, endowed with bag constants associated to volume energy terms, are investigated. In contrast to the usual bag model, these potential bags are distinguished by having smeared bag surfaces. Based on the dynamical assumptions underlying the fuzzy bag model, these bag constants are derived from the corresponding energy-momentum tensor. Explicit expressions for the single-quark energies and for the nucleon bag constant are obtained by means of an improved analytical version of the saddle-point variational method for the Dirac equation with confining power-law potentials of the scalar plus vector (S + V) or pure scalar (S) type.
Resumo:
A systematic construction of super W algebras in terms of the WZNW model based on a super Lie algebra is presented. These are shown to be the symmetry structure of the super Toda models, which can be obtained from the WZNW theory by Hamiltonian reduction. A classification, according to the conformal spin defined by an improved energy momentum tensor, is discussed in general terms for all super Lie algebras whose simple roots are fermionic. A detailed discussion employing the Dirac bracket structure and an explicit construction of W algebras for the cases of OSP(1, 2), OSP(2, 2), OSP(3, 2) and D(2, 1\ alpha) are given. The N = 1 and N = 2 superconformal algebras are discussed in the pertinent cases.
Resumo:
The SU(2) Shyrme model, expanding in the collective coordinates variables, gives rise to second-class constraints. Recently this system was embedded in a more general Abelian gauge theory using the BFFT Hamiltonian method. in this work we quantize this gauge theory computing the Noether current anomaly using for this two different methods: an operatorial Dirac first class formalism and the non-local BV quantization coupled with the Fujikawa regularization procedure. (C) 2000 Elsevier B.V. B.V. All rights reserved.