945 resultados para Dimethylsulfoxide Reductase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidative stress has been associated with normal aging and Alzheimer`s disease (AD). However, little is known about oxidative stress in mild cognitive impairment (MCI) patients who present a high risk for developing AD. The aim of this study was to investigate plasma production of the lipid peroxidation marker, malonaldehyde (MDA) and to determine, in erythrocytes, the enzymatic antioxidant activity of catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST) in 33 individuals with MCI, 29 with mild probable AD and 26 healthy aged subjects. GR/GPx activity ratio was calculated to better assess antioxidant defenses. The relationship between oxidative stress and cognitive performance was also evaluated by the Mini Mental State Examination (MMSE). AD patients showed higher MDA levels than both MCI and healthy elderly subjects. MCI subjects also exhibited higher MDA levels compared to controls. Catalase and GPx activity were similar in MCI and healthy individuals but higher in AD. GR activity was lower in MCI and AD patients than in healthy aged subjects. Additionally, GR/GPx ratio was higher in healthy aged subjects, intermediate in MCI and lower in AD patients. No differences in GST activity were detected among the groups. MMSE was negatively associated with MDA levels (r = -0.31, p = 0.028) and positively correlated with GR/GPx ratio in AD patients (r = 0.68, p < 0.001). MDA levels were also negatively correlated to GR/GPx ratio (r = -0.31, p = 0.029) in the AD group. These results suggest that high lipid peroxidation and decreased antioxidant defenses may be present early in cognitive disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Objective: Cyclosporine A treatment is important in the therapy of a number of medical conditions; however, alveolar bone loss is an important negative side-effect of this drug. As such, we evaluated whether concomitant administration of simvastatin would minimize cyclosporine A-associated alveolar bone loss in rats subjected, or not, to experimental periodontal disease. Material and Methods: Groups of 10 rats each were treated with cyclosporine A (10 mg/kg/day), simvastatin (20 mg/kg/day), cyclosporine A and simvastatin concurrently (cyclosporine A/simvastatin) or vehicle for 30 days. Four other groups of 10 rats each received a cotton ligature around the lower first molar and were treated similarly with cyclosporine A, simvastatin, cyclosporine A/simvastatin or vehicle. Calcium (Ca(2+)), phosphorus and alkaline phosphatase levels were evaluated in serum. Expression levels of interleukin-1 beta, prostaglandin E(2) and inducible nitric oxide synthase were evaluated in the gingivomucosal tissues. Bone volume and numbers of osteoblasts and osteoclasts were also analyzed. Results: Treatment with cyclosporine A in rats, with or without ligature, was associated with bone loss, represented by a lower bone volume and an increase in the number of osteoclasts. Treatment with cyclosporine A was associated with bone resorption, whereas simvastatin treatment improved cyclosporine A-associated alveolar bone loss in all parameters studied. In addition, simvastatin, in the presence of inflammation, can act as an anti-inflammatory agent. Conclusion: This study shows that simvastatin therapy leads to a reversal of the cyclosporine A-induced bone loss, which may be mediated by downregulation of interleukin-1 beta and prostaglandin E(2) production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most organisms that grow in the presence of oxygen possess catalases and/or peroxidases, which are necessary for scavenging the H(2)O(2) produced by aerobic metabolism. In this work we investigate the pathways that regulate the Caulobacter crescentus katG gene, encoding the only enzyme with catalase-peroxidase function in this bacterium. The transcriptional start site of the katG gene was determined, showing a short 5` untranslated region. The katG regulatory region was mapped by serial deletions, and the results indicate that there is a single promoter, which is responsible for induction at stationary phase. An oxyR mutant strain was constructed; it showed decreased katG expression, and no KatG protein or catalase-peroxidase activity was detected in stationary-phase cell extracts, implying that OxyR is the main positive regulator of the C. crescentus katG gene. Purified OxyR protein bound to the katG regulatory region between nucleotides -42 and -91 from the transcription start site, as determined by a DNase I footprinting assay, and a canonical OxyR binding site was found in this region. Moreover, OxyR binding was shown to be redox dependent, given that only oxidized proteins bound adjacent to the -35 sequence of the promoter and the katG P1 promoter was activated by OxyR in an H(2)O(2)-dependent manner. On the other hand, this work showed that the iron-responsive regulator Fur does not regulate C. crescentus katG, since a fur mutant strain presented wild-type levels of katG transcription and catalase-peroxidase production and activity, and the purified Fur protein was not able to bind to the katG regulatory region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering that inflammation contributes to obesity-induced insulin resistance and that statins have been reported to have other effects beyond cholesterol lowering, the present study aimed to it whether atorvastatin treatment has anti-inflammatory action in white adipose tissue of obese mice, consequently improving insulin sensitivity. Insulin sensitivity in vivo (by insulin tolerance test); metabolic-hormonal profile; plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and adiponectin; adipose tissue immunohistochemistry; glucose transporter (GLUT) 4; adiponectin; INF-alpha; IL-1 beta; and IL-6 gene expression; and I kappa B kinase (IKK)-alpha/beta activity were assessed in 23-week-old monosodium glutamate induced obese mice untreated or treated with atorvastatin for 4 weeks. Insulin-resistant obese mice had increased plasma triglyceride, insulin, TNF-alpha, and IL-6 plasma levels. Adipose tissue of obese animals showed increased macrophage infiltration, IKK-alpha (42%, P < .05) and IKK-beta (73%, P < .05) phosphorylation, and INF-alpha and IL-6 messenger RNA (mRNA) (similar to 15%, P < .05) levels, and decreased GLUT4 mRNA and protein (30%, P < .05) levels. Atorvastatin treatment lowered cholesterol, triglyceride, insulin, INF-alpha, and IL-6 plasma levels, and restored whole-body insulin sensitivity. In adipose tissue, atorvastatin decreased macrophage in and normalized IKK-alpha/beta phosphorylation; INF-alpha, IL-6, and GLUT4 mRNA; and GLUT4 protein to control levels. The present findings demonstrate that atorvastatin has anti-inflammatory effects on adipose tissue of obese mice, which may be important to its local and whole-body insulin-sensitization effects. (C) 2010 Published by Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Caulobacter crescentus rho:Tn5 mutant strain presenting a partially functional transcription termination factor Rho is highly sensitive to hydrogen peroxide in both exponential and stationary phases. The mutant was shown to be permanently under oxidative stress, based on fluorophore oxidation, and also to be sensitive to tert-butyl hydroperoxide and paraquat. However, the results showed that the activities of superoxide dismutases CuZnSOD and FeSOD and the alkylhydroperoxide reductase ahpC mRNA levels in the rho mutant were comparable to the wild-type control in the exponential and stationary phases. In contrast, the KatG catalase activity of the rho mutant strain was drastically decreased and did not show the expected increase in the stationary phase compared with the exponential phase. Transcription of the katG gene was increased in the rho mutant and the levels of the immunoreactive KatG protein do not differ considerably compared with the wild type in the stationary phase, suggesting that KatG activity is affected in a translational or a post-translational step.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formaldehyde (FA) exposure induces upper airways irritation and respiratory abnormalities, but its mechanisms are not understood. Since mast cells are widely distributed in the airways, we hypothesized that FA might modify the airways reactivity by mechanism involving their activation. Tracheal rings of rats were incubated with Dulbecco`s modified medium culture containing FA (0.1 ppm) in 96-well plastic microplates in a humid atmosphere. After 30 min, 6 h, and 24-72 h, the rings were suspended in an organ bath and dose-response curve to methacholine (MCh) were determined. incubation with FA caused a transient tracheal hyperresponsiveness to MCh that was independent from tracheal epithelium integrity. Connective tissue mast cell depletion caused by compound 48/80 or mast cell activation by the allergic reaction, before exposure of tracheal rings to FA prevented the increased responsiveness to MCh. LTB(4) concentrations were increased in the culture medium of tracheas incubated with FA for 48 h, whereas the LTB(4)-receptor antagonist MK886 (1 mu M) added before FA exposure rendered the tracheal rings normoreactive to MCh. In addition, FA exposure did not cause hyperresponsiveness in tracheal segments incubated with L-arginine (1 mu M). We suggest that airway connective tissue mast cells constitute the target and may provide the increased LTB(4) generation as well as an elevated consumption of NO leading to tracheal hyperresponsiveness to MCh. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemistry of Ru(III) complexes containing dmso as a ligand has become an interesting area in the cancer treatment field. Because of this, structural knowledge and chemistry of the moiety Ru(III)-dmso have become important to cancer research. The crystal structures of the compounds mer-[RuCl(3)(dms)(3)] (1) and mer-[RuCl(3)(dms)(2)(dmso)]:mer-[RuCl(3)(dms)(3)] (2) were determined by X-ray crystallography and a speciation of the presence of intramolecular hydrogen bond in these structures has been studied. Compound (1) crystallizes in the orthorhombic space group, Pna2(1); a = 16.591(8) angstrom, b = 8.724(2) angstrom. c = 10.547(3) angstrom; Z = 12 and (2) crystallizes in the space group, P2(1)/C: a = 11.9930(2) angstrom, b = 7.9390(2) angstrom, c = 15.8700(3) angstrom, beta = 93.266(1)degrees, Z = 2. From the X-ray structures solved in this work, were possible to suggest an interpretation for the broad lines observed in the EPR spectra of the Ru(III) compounds explored here. Also, the exchange interactions detected by EPR spectroscopy in solid state and in solution, confirm the presence of van der Waals interactions such as C-H center dot center dot center dot Cl in the compounds (1), (2) and (3). The use of techniques such as IR, UV-vis, (1)H NMR and EPR Spectroscopy and Cyclic Voltammetry were applied in this work to analyze the behavior of these metallocompounds. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statins have pleiotropic effects, including endothelial nitric oxide synthase (eNOS) upregulation and increased nitric oxide formation, which can be modulated by a genetic polymorphism in the promoter region of the eNOS gene (T-786C). Here, we report our investigation of whether this polymorphism modulates the effects of atorvastatin on the fluidity of erythrocyte membranes. We genotyped 200 healthy subjects (males, 18-60 years of age) and then randomly selected 15 of these with the TT genotype and 15 with the CC genotype to receive placebo or atorvastatin (10 mg/day oral administration) for 14 days. Cell membrane fluidity was evaluated by electron paramagnetic resonance (EPR) and spin-labeling method. The EPR spectra were registered on a VARIAN-E4 spectrometer. Thiobarbituric acid-reactive species (TBA-RS) and plasma membrane cholesterol were determined in the erythrocytes. Atorvastatin reduced membrane fluidity in CC subjects (P < 0.05) but not in those with the TT genotype (P > 0.05). While no significant differences were found in plasma membrane cholesterol concentrations, higher TBA-RS concentrations were found in the CC subjects than in the TT subjects (P < 0.05). These findings suggest that a short treatment with atorvastatin is disadvantageous to subjects with the CC genotype for the T-786C polymorphism compared to those with TT genotype, at least in terms of the hemorheological properties of erythrocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most useful methods for elimination of solid residues of health services (SRHS) is incineration. However, it also provokes the emission of several hazardous air pollutants such as heavy metals, furans and dioxins, which produce reactive oxygen species and oxidative stress. The present study, which is parallel to an accompanied paper (Avila Jr. et al., this issue), investigated several enzymatic and non-enzymatic biomarkers of oxidative stress in the blood (contents of vitamin E, lipoperoxidation = TBARS, reduced glutathione = GSH, oxidized glutathione = GSSG, and activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in three different groups (n = 20 each) exposed to airborne contamination associated with incineration of SRHS: workers directly (ca. 100 m from the incinerator) and indirectly exposed (residents living ca. 5 km the incineration site), and controls (non-exposed subjects). TBARS and GSSG levels were increased whilst GSH, TG and alpha-tocopherol contents were decreased in workers and residents compared to controls. Increased GST and CAT activities and decreased GPx activities were detected in exposed subjects compared to controls, while GR did not show any difference among the groups. In conclusion, subjects directly or indirectly exposed to SRHS are facing an oxidative insult and health risk regarding fly ashes contamination from SRHS incineration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aminoacetone (AA), triose phosphates, and acetone are putative endogenous sources of potentially cytotoxic and genotoxic methylglyoxal (MG), which has been reported to be augmented in the plasma of diabetic patients. In these patients, accumulation of MG derived from aminoacetone, a threonine and glycine catabolite, is inferred from the observed concomitant endothelial overexpression of circulating semicarbazide-sensitive amine oxidases. These copper-dependent enzymes catalyze the oxidation of primary amines, such as AA and methylamine, by molecular oxygen, to the corresponding aldehydes, NH4+ ion and H2O2. We recently reported that AA aerobic oxidation to MG also takes place immediately upon addition of catalytic amounts of copper and iron ions. Taking into account that (i) MG and H2O2 are reportedly cytotoxic to insulin-producing cell lineages such as RINm5f and that (ii) the metal-catalyzed oxidation of AA is propagated by O-2(center dot-) radical anion, we decided to investigate the possible pro-oxidant action of AA on these cells taken here as a reliable model system for pancreatic beta-cells. Indeed, we show that AA (0.10-5.0 mM) administration to RINm5f cultures induces cell death. Ferrous (50-300 mu M) and Fe3+ ion (100 mu M) addition to the cell cultures had no effect, whereas Cu2+ (5.0-100 mu M) significantly increased cell death. Supplementation of the AA- and Cu2+-containing culture medium with antioxidants, such as catalase (5.0 mu M), superoxide dismutase (SOD, 50 U/mL), and N-acetylcysteine (NAC, 5.0 mM) led to partial protection. mRNA expression of MnSOD, CuZnSOD, glutathione peroxidase, and glutathione reductase, but not of catalase, is higher in cells treated with AA (0.50-1.0 mM) plus Cu2+ ions (10-50 mu M) relative to control cultures. This may imply higher activity of antioxidant enzymes C, in RINm5f AA-treated cells. In addition, we have found that AA (0.50-1.0 mM) Plus Cu2+ (100 mu M) (i) increase RINm5f cytosolic calcium; (ii) promote DNA fragmentation; and (iii) increase the pro-apoptotic (Bax)/antiapoptotic (Bcl-2) ratio at the level of mRNA expression. In conclusion, although both normal and pathological concentrations of AA are probably much lower than those used here, it is tempting to propose that excess AA in diabetic patients may drive oxidative damage and eventually the death of pancreatic beta-cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic chagasic cardiac patients are exposed to oxidative stress that apparently contributes to disease progression. Benznidazole (BZN) is the main drug used for the treatment of chagasic patients and its action involves the generation of reactive species. 41 patients with Chagas` heart disease were selected and biomarkers of oxidative stress were measured before and after 2 months of BZN treatment (5 mg/kg/day) and the subsequent antioxidant supplementation with vitamin E (800 UI/day) and C (500 mg/day) during 6 months. Patients were classified according to the modified Los Andes clinical hemodynamic classification in groups IA, IB, II and III, and the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR), as well as the contents of reduced glutathione (GSH), thiobarbituric acid reactive species (TBARS), protein carbonyl (PC), vitamin E and C and nitric oxide (NO), myeloperoxidase (MPO) and adenosine deaminase (ADA) activities were measured in their blood. Excepting in group III, after BZN treatment SOD, CAT, GPx and GST activities as well as PC levels were enhanced while vitamin E levels were decreased in these groups. After antioxidant supplementation the activities of SOD, GPx and GR were decreased whereas PC, TBARS, NO, and GSH levels were decreased. In conclusion, BZN treatment promoted an oxidative insult in such patients while the antioxidant supplementation was able to attenuate this effect by increasing vitamin E levels, decreasing PC and TBARS levels, inhibiting SOD, GPx and GR activities as well as inflammatory markers, mainly in stages with less cardiac involvement. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deletion of COQ10 in Saccharomyces cerevisiae elicits a respiratory defect characterized by the absence of cytochrome c reduction, which is correctable by the addition of exogenous diffusible coenzyme Q(2). Unlike other coq mutants with hampered coenzyme Q(6) (Q(6)) synthesis, coq10 mutants have near wild-type concentrations of Q(6). In the present study, we used Q-cycle inhibitors of the coenzyme QH(2)-cytochrome c reductase complex to assess the electron transfer properties of coq10 cells. Our results show that coq10 mutants respond to antimycin A, indicating an active Q-cycle in these mutants, even though they are unable to transport electrons through cytochrome c and are not responsive to myxothiazol. EPR spectroscopic analysis also suggests that wild-type and coq10 mitochondria accumulate similar amounts of Q(6) semiquinone, despite a lower steady-state level of coenzyme QH(2)-cytochrome c reductase complex in the coq10 cells. Confirming the reduced respiratory chain state in coq10 cells, we found that the expression of the Aspergillus fumigatus alternative oxidase in these cells leads to a decrease in antimycin-dependent H(2)O(2) release and improves their respiratory growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coal mining and incineration of solid residues of health services (SRHS) generate several contaminants that are delivered into the environment, such as heavy metals and dioxins. These xenobiotics can lead to oxidative stress overgeneration in organisms and cause different kinds of pathologies, including cancer. In the present study the concentrations of heavy metals such as lead, copper, iron, manganese and zinc in the urine, as well as several enzymatic and non-enzymatic biomarkers of oxidative stress in the blood (contents of lipoperoxidation = TBARS, protein carbonyls = PC, protein thiols = PT, alpha-tocopherol = AT, reduced glutathione = GSH, and the activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in the blood of six different groups (n = 20 each) of subjects exposed to airborne contamination related to coal mining as well as incineration of solid residues of health services (SRHS) after vitamin E (800 mg/day) and vitamin C (500 mg/day) supplementation during 6 months, which were compared to the situation before the antioxidant intervention (Avila et al., Ecotoxicology 18:1150-1157, 2009; Possamai et al., Ecotoxicology 18:1158-1164, 2009). Except for the decreased manganese contents, heavy metal concentrations were elevated in all groups exposed to both sources of airborne contamination when compared to controls. TBARS and PC concentrations, which were elevated before the antioxidant intervention decreased after the antioxidant supplementation. Similarly, the contents of PC, AT and GSH, which were decreased before the antioxidant intervention, reached values near those found in controls, GPx activity was reestablished in underground miners, and SOD, CAT and GST activities were reestablished in all groups. The results showed that the oxidative stress condition detected previously to the antioxidant supplementation in both directly and indirectly subjects exposed to the airborne contamination from coal dusts and SRHS incineration, was attenuated after the antioxidant intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen species and nitrogen species have been implicated in the pathogenesis of coal dust-induced toxicity. The present study investigated several oxidative stress biomarkers (Contents of lipoperoxidation = TBARS, reduced = GSH, oxidized = GSSG and total glutathione = TG, alpha-tocopherol, and the activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in the blood of three different groups (n = 20 each) exposed to airborne contamination associated with coal mining activities: underground workers directly exposed, surface workers indirectly exposed, residents indirectly exposed (subjects living near the mines), and controls (non-exposed subjects). Plasma TBARS were increased and whole blood TG and GSH levels were decreased in all groups compared to controls. Plasma alpha-tocopherol contents showed approximately half the values in underground workers compared to controls. GST activity was induced in workers and also in residents at the vicinity of the mining plant, whilst CAT activity was induced only in mine workers. SOD activity was decreased in all groups examined, while GPx activity showed decreased values only in underground miners, and GR did not show any differences among the groups. The results showed that subjects directly and indirectly exposed to coal dusts face an oxidative stress condition. They also indicate that people living in the vicinity of the mine plant are in health risk regarding coal mining-related diseases.