979 resultados para Differential protection for power transformer
Resumo:
Glutamate is the major excitatory neurotransmitter in the retina and is removed from the extracellular space by an energy-dependent process involving neuronal and glial cell transporters. The radial glial Muller cells express the glutamate transporter, GLAST, and preferentially accumulate glutamate. However, during an ischaemic episode, extracellular glutamate concentrations may rise to excitotoxic levels. Is this catastrophic rise in extracellular glutamate due to a failure of GLAST? Using immunocytochemistry, we monitored the transport of the glutamate transporter substrate, D-aspartate, in the retina under normal and ischaemic conditions. Two models of compromised retinal perfusion were compared: (1) Anaesthetised rats had their carotid arteries occluded for 7 days to produce a chronic reduction in retinal blood flow. Retinal function was assessed by electroretinography. D-aspartate was injected into the eye for 45 min, Following euthanasia, the retina was processed for D-aspartate. GLAST and glutamate immunocytochemistry. Although reduced retinal perfusion suppresses the electroretinogram b-wave, neither retinal histology, GLAST expression, nor the ability of Muller cells to uptake D-aspartate is affected. As this insult does not appear to cause excitotoxic neuronal damage, these data suggest that GLAST function and glutamate clearance are maintained during periods of reduced retinal perfusion. (2) Occlusion of the central retinal artery for 60 min abolishes retinal perfusion, inducing histological damage and electroretinogram suppression. Although GLAST expression appears to be normal. its ability to transport D-aspartate into Muller cells is greatly reduced. Interestingly, D-aspartate is transported into neuronal cells, i.e. photoreceptors, bipolar and ganglion cells. This suggests that while GLAST is vitally important for the clearance of excess extracellular glutamate, its capability to sustain inward transport is particularly susceptible to an acute ischaemic attack. Manipulation of GLAST function could alleviate the degeneration and blindness that result from ischaemic retinal disease. (C) 2001 Elsevier Science Ltd, All rights reserved.
Resumo:
Objective-To compare the accuracy and feasibility of harmonic power Doppler and digitally subtracted colour coded grey scale imaging for the assessment of perfusion defect severity by single photon emission computed tomography (SPECT) in an unselected group of patients. Design-Cohort study. Setting-Regional cardiothoracic unit. Patients-49 patients (mean (SD) age 61 (11) years; 27 women, 22 men) with known or suspected coronary artery disease were studied with simultaneous myocardial contrast echo (MCE) and SPECT after standard dipyridamole stress. Main outcome measures-Regional myocardial perfusion by SPECT, performed with Tc-99m tetrafosmin, scored qualitatively and also quantitated as per cent maximum activity. Results-Normal perfusion was identified by SPECT in 225 of 270 segments (83%). Contrast echo images were interpretable in 92% of patients. The proportion of normal MCE by grey scale, subtracted, and power Doppler techniques were respectively 76%, 74%, and 88% (p < 0.05) at > 80% of maximum counts, compared with 65%, 69%, and 61% at < 60% of maximum counts. For each technique, specificity was lowest in the lateral wail, although power Doppler was the least affected. Grey scale and subtraction techniques were least accurate in the septal wall, but power Doppler showed particular problems in the apex. On a per patient analysis, the sensitivity was 67%, 75%, and 83% for detection of coronary artery disease using grey scale, colour coded, and power Doppler, respectively, with a significant difference between power Doppler and grey scale only (p < 0.05). Specificity was also the highest for power Doppler, at 55%, but not significantly different from subtracted colour coded images. Conclusions-Myocardial contrast echo using harmonic power Doppler has greater accuracy than with grey scale imaging and digital subtraction. However, power Doppler appears to be less sensitive for mild perfusion defects.
Resumo:
The inhibition of recombinant CYP1A1 and CYP1A2 activity by quinidine and quinine was evluated using ethoxyresorufin O -deethylation, phenacetin O -deethylation and propranolol desisopropylation as probe catalytic pathways. 2. With substrate concentrations near the K m of catalysis, both quinidine and quinine potently inhibited CYP1A1 activity with [ I ] 0.5 ~ 1-3 μM, whereas in contrast, there was little inhibition of CYP1A2 activity. The Lineweaver-Burk plots with varying inhibitor concentrations suggested that inhibition by quinidine and quinine was competitive. 3. There was only trace metabolism of quinidine by recombinant CYP1A1, whereas rat liver microsomes as a control showed extensive consumption of quinidine and metabolite production. 4. This work suggests that quinidine is a non-classical inhibitor of CYP1A1 and that it is not as highly specific at inhibiting CYP2D6 as previously thought.
Resumo:
The blending of coals has become popular to improve the performance of coals, to meet specifications of power plants and, to reduce the cost of coals, This article reviews the results and provides new information on ignition, flame stability, and carbon burnout studies of blended coals. The reviewed studies were conducted in laboratory-, pilot-, and full-scale facilities. The new information was taken in pilot-scale studies. The results generally show that blending a high-volatile coal with a low-volatile coal or anthracite can improve the ignition, flame stability and burnout of the blends. This paper discusses two general methods to predict the performance of blended coals: (1) experiment; and (2) indices. Laboratory- and pilot-scale tests, at least, provide a relative ranking of the combustion performance of coal/blends in power station boilers. Several indices, volatile matter content, heating value and a maceral index, can be used to predict the relative ranking of ignitability and flame stability of coals and blends. The maceral index, fuel ratio, and vitrinite reflectance can also be used to predict the absolute carbon burnout of coal and blends within limits. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents the comparison of surface diffusivities of hydrocarbons in activated carbon. The surface diffusivities are obtained from the analysis of kinetic data collected using three different kinetics methods- the constant molar flow, the differential adsorption bed and the differential permeation methods. In general the values of surface diffusivity obtained by these methods agree with each other, and it is found that the surface diffusivity increases very fast with loading. Such a fast increase can not be accounted for by a thermodynamic Darken factor, and the surface heterogeneity only partially accounts for the fast rise of surface diffusivity versus loading. Surface diffusivities of methane, ethane, propane, n-butane, n-hexane, benzene and ethanol on activated carbon are reported in this paper.
Resumo:
Understanding the genetic architecture of quantitative traits can greatly assist the design of strategies for their manipulation in plant-breeding programs. For a number of traits, genetic variation can be the result of segregation of a few major genes and many polygenes (minor genes). The joint segregation analysis (JSA) is a maximum-likelihood approach for fitting segregation models through the simultaneous use of phenotypic information from multiple generations. Our objective in this paper was to use computer simulation to quantify the power of the JSA method for testing the mixed-inheritance model for quantitative traits when it was applied to the six basic generations: both parents (P-1 and P-2), F-1, F-2, and both backcross generations (B-1 and B-2) derived from crossing the F-1 to each parent. A total of 1968 genetic model-experiment scenarios were considered in the simulation study to quantify the power of the method. Factors that interacted to influence the power of the JSA method to correctly detect genetic models were: (1) whether there were one or two major genes in combination with polygenes, (2) the heritability of the major genes and polygenes, (3) the level of dispersion of the major genes and polygenes between the two parents, and (4) the number of individuals examined in each generation (population size). The greatest levels of power were observed for the genetic models defined with simple inheritance; e.g., the power was greater than 90% for the one major gene model, regardless of the population size and major-gene heritability. Lower levels of power were observed for the genetic models with complex inheritance (major genes and polygenes), low heritability, small population sizes and a large dispersion of favourable genes among the two parents; e.g., the power was less than 5% for the two major-gene model with a heritability value of 0.3 and population sizes of 100 individuals. The JSA methodology was then applied to a previously studied sorghum data-set to investigate the genetic control of the putative drought resistance-trait osmotic adjustment in three crosses. The previous study concluded that there were two major genes segregating for osmotic adjustment in the three crosses. Application of the JSA method resulted in a change in the proposed genetic model. The presence of the two major genes was confirmed with the addition of an unspecified number of polygenes.
A broadband uniplanar quasi-yagi antenna: Parameter study in application to a spatial power combiner
Resumo:
We investigate the size and power properties of the AH test of evolutionary change. This involves examining whether the size results are sensitive to both the number of individual frequencies estimated and the spectral shape adopted under the null hypothesis. The power tests examine whether the test has good power to detect shifts in both spectral position (variance) and spectral shape (autocovariance structure).
Resumo:
Aim. To evaluate the effectiveness of three approaches to assisting the female partners of male problem drinkers with the stress imposed by the male's drinking. Design. Participants were assigned randomly via random number tables to one of three treatment conditions: supportive counselling, stress management or alcohol-focused couples therapy. Setting. The intervention took place at the Behaviour Research and Therapy Centre (BRTC), The University of Queensland. This research and training centre offers outpatient psychology services to the community. Participants. Sixty-one married women whose husbands drank heavily. Participants reported protracted alcohol problems, severe impact of alcohol on social functioning and severe marital distress. Measurement. The women's stress, alcohol consumption by the male, and relationship functioning were assessed at pre- and post-treatment and at 6-month follow-up. Interventions. All three treatments involved 15 1-hour sessions with the woman. In the alcohol-focused couple therapy, attempts were made to engage the man in these sessions. Results. Contrary to our predictions, there were few differences between the treatments. All three treatments were associated with reductions in the women's reported stress, with trends for somewhat greater reduction in the women's stress in the stress management and alcohol-focused couples therapy conditions than for supportive counselling. None of the treatments produced clinically significant reductions in men's drinking or relationship distress. Conclusion. The treatments ease stresses and burden but do not improve drinking or relationships. Limited power in the design restricted the capacity to detect differential treatment effects.
Resumo:
Analogues of the potent, conformationally biased, decapeptide agonist of human C5a anaphylatoxin, C5a(65-74)Y65,F67,P69,P71,D-Ala73 (YSFKPMPLaR, peptide 54), were synthesized with methyl groups occupying specific C5a,, amide nitrogen atoms along the peptide backbone. This N-methylation induced crucial extended backbone conformations in a manner similar to the two Pro residues, but without eliminating the contributions made by the side-chain of the residue for which Pro was substituted. The presence of backbone N-methyl groups on peptide 54 analogues had pronounced detrimental effects on the ability to bind and activate C5aRs expressed on human PMNs, but not on the ability to contract smooth muscle of human umbilical artery. Several N-methylated analogues of peptide 54 (peptides 56, 67, 124, 125, and 137) were significantly more selective for smooth muscle contraction, which is mediated by tissue resident macrophages, than for enzyme release from PMNs. Indeed, peptide 67, YSFKDMP(MeL)aR was almost 3000-fold more selective for smooth muscle contraction than for PMN enzyme release. Consistent with these differential activities was the observation that peptide 67 expressed a significantly greater binding affinity to C5aRs expressed on rat macrophages than on rat PMNs. This differential activity was also observed in vivo in the rat where peptide 67 induced a hypotensive response similar to peptide 54 and rhuC5a, but without accompanying neutropenia. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This note gives a theory of state transition matrices for linear systems of fuzzy differential equations. This is used to give a fuzzy version of the classical variation of constants formula. A simple example of a time-independent control system is used to illustrate the methods. While similar problems to the crisp case arise for time-dependent systems, in time-independent cases the calculations are elementary solutions of eigenvalue-eigenvector problems. In particular, for nonnegative or nonpositive matrices, the problems at each level set, can easily be solved in MATLAB to give the level sets of the fuzzy solution. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Objectives: This study examines human scalp electroencephalographic (EEG) data for evidence of non-linear interdependence between posterior channels. The spectral and phase properties of those epochs of EEG exhibiting non-linear interdependence are studied. Methods: Scalp EEG data was collected from 40 healthy subjects. A technique for the detection of non-linear interdependence was applied to 2.048 s segments of posterior bipolar electrode data. Amplitude-adjusted phase-randomized surrogate data was used to statistically determine which EEG epochs exhibited non-linear interdependence. Results: Statistically significant evidence of non-linear interactions were evident in 2.9% (eyes open) to 4.8% (eyes closed) of the epochs. In the eyes-open recordings, these epochs exhibited a peak in the spectral and cross-spectral density functions at about 10 Hz. Two types of EEG epochs are evident in the eyes-closed recordings; one type exhibits a peak in the spectral density and cross-spectrum at 8 Hz. The other type has increased spectral and cross-spectral power across faster frequencies. Epochs identified as exhibiting non-linear interdependence display a tendency towards phase interdependencies across and between a broad range of frequencies. Conclusions: Non-linear interdependence is detectable in a small number of multichannel EEG epochs, and makes a contribution to the alpha rhythm. Non-linear interdependence produces spatially distributed activity that exhibits phase synchronization between oscillations present at different frequencies. The possible physiological significance of these findings are discussed with reference to the dynamical properties of neural systems and the role of synchronous activity in the neocortex. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.