990 resultados para Differential ability
Resumo:
Pituitary adenylate cyclase-activating polypeptide (PACAP) which belongs to the secretin/glucagon/ VIP family has been originally isolated from the sheep hypothalamus on the basis of its ability to stimulate cAMP formation in culture rat anterior pituitary cells. Post-translational processing of the PACAP precursor generates two biologically active molecular forms, PACAP-38 and PACAP-27. The primary structure of PACAP has been remarkably conserved during evolution. The sequence of PACAP-27 exhibits substantial similarities with those of vasoactive intestinal polypeptide (VIP), glucagon and secretin. The gene encoding the PACAP precursor is widely expressed in brain and various peripheral organs, notably in endocrine glands, gastro-intestinal, urogenital tracts and respiratory system. In vivo, and in vitro studies have shown that PACAP exhibits multiple activities especially a trophic activity during ontogenesis, notably in the adrenal medulla and the central nervous system. The biological effects of PACAP are mediated through three distinct receptor subtypes which exhibit differential affinities for PACAP and VIP. The PAC1 receptor, which shows high selectivity for PACAP, is coupled to several transduction systems. In contrast, VPAC1 and VPAC2, which bind with the same affinity for PACAP and VIP, are mainly coupled to the adenylyl cyclase pathway. In conclusion, PACAP is neuropeptide, and it functions as a hypothalamic hormone, neurohormone, neuromodulator, vasodilator, neurotransmitter or trophic factor in the brain and the various organs.
Resumo:
Superimposed on the activation of the embryonic genome in the preimplantation mouse embryo is the formation of a transcriptionally repressive state during the two-cell stage. This repression appears mediated at the level of chromatin structure, because it is reversed by inducing histone hyperacetylation or inhibiting the second round of DNA replication. We report that of more than 200 amplicons analyzed by mRNA differential display, about 45% of them are repressed between the two-cell and four-cell stages. This repression is scored as either a decrease in amplicon expression that occurs between the two-cell and four-cell stages or on the ability of either trichostatin A tan inhibitor of histone deacetylases) or aphidicolin tan inhibitor of replicative DNA polymerases) to increase the level of amplicon expression. Results of this study also indicate that about 16% of the amplicons analyzed likely are novel genes whose sequence doesn't correspond to sequences in the current databases, whereas about 20% of the sequences expressed during this transition likely are repetitive sequences. Lastly, inducing histone hyperacetylation in the two-cell embryos inhibits cleavage to the four-cell stage. These results suggest that genome activation is global and relatively promiscuous and that a function of the transcriptionally repressive state is to dictate the appropriate profile of gene expression that is compatible with further development.
Resumo:
To understand better the molecular mechanisms of differential migration of antibody-secreting cells (ASCs) into mouse genital tracts, and regulation by sex hormones, surface markers, hormone receptors and adhesion molecules in mouse SG2 and PA4 hybridoma cells, respectively, secreting IgG2b and polymeric IgA antibody were detected by flow cytometry or RT-PCR. Semiquantitative RT-PCR was also used for measuring mRNA expression of adhesion molecules and chemokines (VCAM-1, ICAM-1, P-selectin, JAM-1 and CXCL12) in genital tracts of various adult mouse groups. The mRNAs of androgen receptor, estrogen receptor beta and CXCR4 were expressed in the ASCs. Sex hormones had no effect on expression of these molecules in ASCs. Except for VCAM-1, mRNA of all examined genes was expressed in normal mouse genital tracts. The mean of relative amounts of ICAM-1 and CXCL12 mRNA in all examined organs of females were higher (2.1- and 1.9-fold) than those in males. After orchiectomy or ovariectomy, the expression of ICAM-1, CXCL12 and P-selectin mRNA in the examined organs increased, except JAM-1 in male and CXCL12 in female. Sex hormone treatment recovered the changes to normal levels of mRNA expression in many examined genital tissues. In combination with our previous work, preferential migration of ASCs into female genital tract and regulation of migration by sex hormones are associated with expression patterns of adhesion molecules and chemokines in genital tract rather than in ASCs. (C) 2006 Elsevier Ireland Ltd. All rights reserved.
Holographic offset launch for dynamic optimization and characterization of multimode fiber bandwidth
Resumo:
Optimization of the bandwidth of a 2 km 50 μm multimode fiber at 850 nm is investigated theoretically and experimentally by steering a single spot, or two in antiphase spots across the core of the fiber in two dimensions using a ferroelectric liquid-crystal-based spatial light modulator. This method not only allows an optimal offset launch position to be chosen in situ but can also characterize the geometry and position of the core, identify defects, and measure the maximum differential mode delay. Its ability to selectively excite specific mode groups is also of relevance to mode-group division multiplexing. © 2012 IEEE.
Resumo:
One of the main claims of the nonparametric model of random uncertainty introduced by Soize (2000) [3] is its ability to account for model uncertainty. The present paper investigates this claim by examining the statistics of natural frequencies, total energy and underlying dispersion equation yielded by the nonparametric approach for two simple systems: a thin plate in bending and a one-dimensional finite periodic massspring chain. Results for the plate show that the average modal density and the underlying dispersion equation of the structure are gradually and systematically altered with increasing uncertainty. The findings for the massspring chain corroborate the findings for the plate and show that the remote coupling of nonadjacent degrees of freedom induced by the approach suppresses the phenomenon of mode localization. This remote coupling also leads to an instantaneous response of all points in the chain when one mass is excited. In the light of these results, it is argued that the nonparametric approach can deal with a certain type of model uncertainty, in this case the presence of unknown terms of higher or lower order in the governing differential equation, but that certain expectations about the system such as the average modal density may conflict with these results. © 2012 Elsevier Ltd.
Resumo:
We present a fast, high-throughput method for characterizing the motility of microorganisms in 3D based on standard imaging microscopy. Instead of tracking individual cells, we analyse the spatio-temporal fluctuations of the intensity in the sample from time-lapse images and obtain the intermediate scattering function (ISF) of the system. We demonstrate our method on two different types of microorganisms: bacteria, both smooth swimming (run only) and wild type (run and tumble) Escherichia coli, and the bi-flagellate alga Chlamydomonas reinhardtii. We validate the methodology using computer simulations and particle tracking. From the ISF, we are able to extract (i) for E. coli: the swimming speed distribution, the fraction of motile cells and the diffusivity, and (ii) for C. reinhardtii: the swimming speed distribution, the amplitude and frequency of the oscillatory dynamics. In both cases, the motility parameters are averaged over \approx 10^4 cells and obtained in a few minutes.
Resumo:
This paper introduces a pressure sensing structure configured as a stress sensitive differential amplifier (SSDA), built on a Silicon-on-Insulator (SOI) membrane. Theoretical calculation show the significant increase in sensitivity which is expected from the pressure sensors in SSDA configuration compared to the traditional Wheatstone bridge circuit. Preliminary experimental measurements, performed on individual transistors placed on the membrane, exhibit state-the-art sensitivity values (1.45mV/mbar). © 2012 IEEE.
Resumo:
Studies on human monetary prediction and decision making emphasize the role of the striatum in encoding prediction errors for financial reward. However, less is known about how the brain encodes financial loss. Using Pavlovian conditioning of visual cues to outcomes that simultaneously incorporate the chance of financial reward and loss, we show that striatal activation reflects positively signed prediction errors for both. Furthermore, we show functional segregation within the striatum, with more anterior regions showing relative selectivity for rewards and more posterior regions for losses. These findings mirror the anteroposterior valence-specific gradient reported in rodents and endorse the role of the striatum in aversive motivational learning about financial losses, illustrating functional and anatomical consistencies with primary aversive outcomes such as pain.