941 resultados para Diabetic neuropathies
Resumo:
Outbred Wistar rats were randomly assigned to three experimental groups: GI, 10 nondiabetic control rats; GII, 10 alloxan-diabetic control rats; GIII, 25 alloxan-diabetic rats that received pancreaticoduodenal transplantation (PDT) from normal donor Wistar rats and were immunosuppressed with cyclosporin A. For 7 prior and 4, 7, 14, 21, and 30 days posttransplantation (during which the animals were housed in metabolic cages for periods of 24 hours) body weight, water and food intake, urine output, blood and urinary glucose, plasma insulin, and glucagon were recorded. These parameters were also concurrently recorded for diabetic and nondiabetic control rats. Animals were sacrificed after 30 days and histological and immunohistochemical studies of the pancreas were performed. Pancreatic transplants consistently and significantly improved the metabolic abnormalities of the diabetic rat (P < 0.01) by restoring body weight gain, and by immediate relief of hyperglycemia, glucosuria, polyuria, polydipsia, and also the low levels of plasma insulin. The plasma glucagon, elevated in diabetic control rats, did not change after transplant.
Resumo:
Objective: the aim of this work was to compare the effect of low-level laser therapy (LLLT) on the wound healing process in nondiabetic and diabetic rats. Background Data: Among the clinical symptoms caused by diabetes mellitus, a delay in wound healing is a potential risk for patients. It is suggested that LLLT can improve wound healing. Methods: the tissue used for this study was extracted from animals suffering from diabetes, which was induced by Streptozotocin (R), and from nondiabetic rats. Animals were assembled into two groups of 25 rats each (treated and control) and further subdivided into two groups: diabetic (n = 15) and nondiabetic (n = 10). A full-thickness skin wound was made on the dorsum. area, with a round 8-mm hole-punch. The treated group was irradiated by a HeNe laser at 632.8 nm, with the following parameters: 15 mW, exposition time of 17 sec, 0.025 cm(2) irradiated area, and energy density of 10 J/cm(2). Square full-thickness skin samples (18 mm each side, including both injured and noninjured tissues) were obtained at 4, 7, and 15 days after surgery and analyzed by qualitative and quantitative histological methods. Results: Quantitative histopathological analysis confirmed the results of the qualitative analysis through histological microscope slides. When comparing tissue components (inflammatory cells, vessels and fibroblast/area), we found that treated animals had a less intense inflammatory process than controls. Conclusion: Results obtained by both qualitative and quantitative analyses suggested that irradiation of rats with HeNe (632.8 nm), at the tested dose, promoted efficient wound healing in both nondiabetic and diabetic rats as, compared to the control group.
Resumo:
Muller cells provide nutrition for neural cells. We studied the structure and ultrastructure of Muller cells in the retina of thirty 3-month old Wistar rats; divided equally into 3 groups: normal rats, alloxan diabetic rats and treated alloxan diabetic rats. 1 and 12 months after induction of diabetes. We observed that the Muller cell nuclei under light microscope examination had hexagonal shape and higher density than the other nuclei. Differences between groups could be observed only by electron microscopy. In the diabetic rats, Muller cells presented dispersion of nuclear chromatin and electrondense nuclear granulations, with the presence of increased glycogen, dense bodies and lysosomes in the cytoplasm. The alterations were more frequent in the perivascular region and at 12 months. The treated diabetic rats exhibited some alterations we observed in diabetic rats. but these alterations were less intense. We conclude that, despite the treatment, the diabetic retinopathy continues to evolve.
Resumo:
We have described previously the prophylactic and therapeutic effect of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in experimental murine tuberculosis. However, the high homology of this protein to the corresponding mammalian 60 kDa heat shock protein (Hsp60), together with the CpG motifs in the plasmid vector, could trigger or exacerbate the development of autoimmune diseases. The non-obese diabetic (NOD) mouse develops insulin-dependent diabetes mellitus (IDDM) spontaneously as a consequence of an autoimmune process that leads to destruction of the insulin-producing beta cells of the pancreas. IDDM is characterized by increased T helper 1 (Th1) cell responses toward several autoantigens, including Hsp60, glutamic acid decarboxylase and insulin. In the present study, we evaluated the potential of DNA-HSP65 injection to modulate diabetes in NOD mice. Our results show that DNA-HSP65 or DNA empty vector had no diabetogenic effect and actually protected NOD mice against the development of severe diabetes. However, this effect was more pronounced in DNA-HSP65-injected mice. The protective effect of DNA-HSP65 injection was associated with a clear shift in the cellular infiltration pattern in the pancreas. This change included reduction of CD4(+) and CD8(+) T cells infiltration, appearance of CD25(+) cells influx and an increased staining for interleukin (IL)-10 in the islets. These results show that DNA-HSP65 can protect NOD mice against diabetes and can therefore be considered in the development of new immunotherapeutic strategies.
Resumo:
1. Increased levels of bone alkaline phosphatase activity were observed in diabetic rats. These animals exhibited impaired bone development without concomitant alterations of the sequence of cellular transformations.2. Alkaline phosphatase activity was delayed in diabetic rats but the kinetic parameters for the hydrolysis of p-Nitrophenylphosphate (PNPP) were virtually the same observed for controls (N = 1.2 and K0.5 = 43 muM).3. Alkaline phosphatase from diabetic rats had a better affinity (K0.5 = 38 muM) for magnesium ions than controls (K0.5 = 9 1 muM).4. Zinc ions affected alkaline phosphatase activity from control and diabetic rats in the same way (K0.5 = 10 muM).
Exfoliative cytology of the oral mucosa in type II diabetic patients: morphology and cytomorphometry
Resumo:
Background: In recent years, important advances have occurred in the determination of diagnostic criteria for the disease diabetes mellitus and in new strategies for its treatment. The purpose of this research was to develop a new method for diabetes diagnosis by microscopic and cytomorphometric analyses of the oral epithelium. Methods: the smears were obtained from three distinct oral sites: buccal mucosa (cheek), tongue dorsum, and floor of the mouth in 10 control individuals and 10 type II diabetic patients. The oral smears were stained with Papanicolaou EA-36 solution. The nuclear (NA) and cytoplasmic (CA) areas were evaluated from 50 integral cells predominant in each oral site by the use of the KS 300(TM) image analysis system (Carl Zeiss, Germany), by which the cytoplasmic/nuclear ratio (C/N) was calculated. Results: the results showed that: (i) the epithelial cells of the diabetic group exhibited figures of binucleation and occasional karyorrhexis in all layers; (ii) the NA was markedly higher (P<0.05) in the diabetic group; (iii) the CA did not exhibit a statistically significant difference (P>0.05) between these two groups; and (iv) the C/N mean was 37.4% lower in the type II diabetic group. Conclusions: These results associated with clinical observations suggest that diabetes mellitus can produce alterations in oral epithelial cells, detectable by microscopy and cytomorphometry, which can be used in the diagnosis of this disease.
Resumo:
The purpose of this study was to assess the temporal relationship between pancreas transplant and the development of electrophysiological changes in the sciatic and caudal nerves of alloxan-induced diabetic rats. Nerve conduction studies were performed in diabetic rats subjected to pancreas transplantation at 4, 12, and 24 weeks after diabetes onset, using nondiabetic and untreated diabetic rats as controls. Nerve conduction data were significantly altered in untreated diabetic control rats up to 48 weeks of follow-up in all time points. Rats subjected to pancreas transplantation up to 4 and 12 weeks after diabetes onset had significantly increased motor nerve conduction velocity with improvement of wave amplitude, distal latency, and temporal dispersion of compound muscle action potential in all follow-up periods (P<0.05); these parameters remained abnormal when pancreas transplantation were performed late at 24 weeks. Our results suggest that early pancreas transplant (at 4-12 weeks) may be effective in controlling diabetic neuropathy in this in vivo model.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)