957 resultados para Dendritic Extent
Resumo:
Chemistry data from 16, 50-115 m deep, sub-annually dated ice cores are used to investigate spatial and temporal concentration variability of sea-salt (ss) SO42- and excess (xs) SO42- over West Antarctica and the South Pole for the last 200 years. Low-elevation ice-core sites in western West Antarctica contain higher concentrations Of SO42- as a result of cyclogenesis over the Ross Ice Shelf and proximity to the Ross Sea Polynya. Linear correlation analysis of 15 West Antarctic ice-core SO42- time series demonstrates that at several sites concentrations Of ssSO(4)(2-) are higher when sea-ice (SIE) extent is greater, and the inverse for XSS04. Concentrations Of XSS04 from the South Pole site (East Antarctica) are associated with SIE from the Weddell region, and West Antarctic XSSO42- concentrations are associated with SIE from the Bellingshausen-Amundsen-Ross region. The only notable rise of the last 200 years in xsSO(4)(2-), around 1940, is not related to SIE fluctuations and is most likely a result of increased xsSO(4)(2-) production in the mid-low latitudes and/or an increase in transport efficiency from the mid-low latitudes to central West Antarctica. These high-resolution records show that the source types and source areas Of ssSO(4)(2-) and xsSO(4)(2-) delivered to eastern and western West Antarctica and the South Pole differ from site to site but can best be resolved using records from spatial ice-core arrays such as the International Trans-Antarctic Scientific Expedition (ITASE).
Resumo:
Type I interferons (IFNs), mainly IFN-α/β play a crucial role in innate defense against viruses. In addition to their direct antiviral activity, type I IFNs have antitumoral and immunomodulatory effects. Although all cells are virtually able to induce IFN-α, the plasmacytoid dendritic cell (pDC) subset represents the ultimate producers of IFN-α as well as other proinflammatory cytokines. Due to the specific expression of TLR7 and TLR9 recognizing single-stranded (ss) RNA and unmethylated CpG motifs respectively, pDCs can secrete up to 1000 times more IFN-α than any cellular types. Additionally, it is well known that several cytokines including type I and II IFNs, Flt3-L, IL-4 and GM-CSF favor pDC-derived IFN-α responses to unmethylated CpG motifs. In a first step, we aimed to characterize and clarify the interactions of two porcine viruses with pDCs. The double-stranded DNA replicative forms of porcine circovirus type 2 (PCV2) were demonstrated to inhibit CpG-induced IFN- α by pDCs. Our study showed that none of the cytokines known to enhance pDC responsiveness can counter-regulate the PCV2-mediated inhibition of IFN-α induced by CpG, albeit IFN-γ significantly reduced the level of inhibition. Interestingly, the presence of IFN-γ enabled pDCs to induce IFN-α to low doses of PCV2. We also noted that after DNase treatment, PCV2 preparations were still able to stimulate pDCs. These data suggest that encapsulated viral ssDNA promotes the induction of IFN-α in pDCs treated with IFN-γ whereas free DNA, presumably as double-stranded forms, was responsible for inhibiting pDC responses. Regarding PRRSV, it has been reported that North American isolates did not induce and even inhibited IFN-α response in pDCs. However, PRRSV infection was also shown to lead to an induction of IFN-α in the serum and in the lungs suggesting that certain cells are responsive to the virus. Contrasting to previous reports we found that numerous PRRSV isolates directly induced IFN-α in pDCs. This response was still observed after UV-inactivation of viruses and required TLR7 signaling. The inhibition of CpG-induced IFN-α was weak and strain dependent, again contrasting with a previous report. We also observed that IFN-γ and IL-4 enhanced IFN-α response to two prototype strains, VR-2332 and LVP23. In summary, we demonstrated that both PCV2 and PRRSV promote IFN-α secretion in pDCs in vitro suggesting that IFN-α detected in PCV2- or PRRSV-infected animal might originate from pDCs. On the other hand, PRRSV replication is restricted to the macrophage (MΦ) lineage. These innate immune cells represent a heterogeneous population which can be induce to “classical” (M1) and “alternative” (M2) activated MΦ acquiring inflammatory or “wound-healing” functional properties, respectively. Nonetheless, little is known about the effect of polarization into M1 or M2 and the susceptibility of these cells to PRRSV. Thus, we examined the impact of cytokine on MΦ polarization into M1 or M2. Infections of these cells by several PRRSV isolates enabled the discrimination of PRRSV isolate in a genotype- and irulencedependent manner in M1 and IFN-β-activated MΦ. In contrast, the expression of PRRSV nucleocapsid in M2 or inactivated MΦ was indistinguishable among the PRRSV isolates tested. In the last part of my Thesis, we investigated the influence of three synthetic porcine cathelicidin peptides for their ability to deliver nucleic acid to pDCs. We reported that all cathelicidins tested can complex and quickly deliver nucleic acids resulting in IFN-α induction. Moreover, we show that the typical α- helical amphipathic conformation is required to mediate killing of bacteria but not for inducing IFN-α secretion by pDCs. Furthermore, we found that E.coli treated with one of these cathelicidins is able to induce significantly higher levels of IFN-α compared to a non-sense version of the peptide. These data suggest that cathelicidins could influence the immune response in a two-step process. First, these peptides target bacteria leading to cell lysis. In turn, cathelicidins form complexes and deliver extracellular microbial nucleic acids released into pDCs. These pDC-derived IFN-α responses could be of particular relevance in driving the adaptive immune responses against microbial infections.
Resumo:
This paper is the maritime and sub–Antarctic contribution to the Scientific Committee for Antarctic Research (SCAR) Past Antarctic Ice Sheet Dynamics (PAIS) community Antarctic Ice Sheet reconstruction. The overarching aim for all sectors of Antarctica was to reconstruct the Last Glacial Maximum (LGM) ice sheet extent and thickness, and map the subsequent deglaciation in a series of 5000 year time slices. However, our review of the literature found surprisingly few high quality chronological constraints on changing glacier extents on these timescales in the maritime and sub–Antarctic sector. Therefore, in this paper we focus on an assessment of the terrestrial and offshore evidence for the LGM ice extent, establishing minimum ages for the onset of deglaciation, and separating evidence of deglaciation from LGM limits from those associated with later Holocene glacier fluctuations. Evidence included geomorphological descriptions of glacial landscapes, radiocarbon dated basal peat and lake sediment deposits, cosmogenic isotope ages of glacial features and molecular biological data. We propose a classification of the glacial history of the maritime and sub–Antarctic islands based on this assembled evidence. These include: (Type I) islands which accumulated little or no LGM ice; (Type II) islands with a limited LGM ice extent but evidence of extensive earlier continental shelf glaciations; (Type III) seamounts and volcanoes unlikely to have accumulated significant LGM ice cover; (Type IV) islands on shallow shelves with both terrestrial and submarine evidence of LGM (and/or earlier) ice expansion; (Type V) Islands north of the Antarctic Polar Front with terrestrial evidence of LGM ice expansion; and (Type VI) islands with no data. Finally, we review the climatological and geomorphological settings that separate the glaciological history of the islands within this classification scheme.
Resumo:
Aims: We sought to analyse local distribution of aortic annulus and left ventricular outflow tract (LVOT) calcification in patients undergoing transcatheter aortic valve replacement (TAVR) and its impact on aortic regurgitation (AR) immediately after device placement. Methods and results: A group of 177 patients with severe aortic stenosis undergoing multislice computed tomography of the aortic root followed by TAVR were enrolled in this single-centre study. Annular and LVOT calcifications were assessed per cusp using a semi-quantitative grading system (0: none; 1 [mild]: small, non-protruding calcifications; 2 [moderate]: protruding [>1 mm] or extensive [>50% of cusp sector] calcifications; 3 [severe]: protruding and extensive calcifications). Any calcification of the annulus or LVOT was present in 107 (61%) and 63 (36%) patients, respectively. Prevalence of annulus/LVOT calcifications in the left coronary cusp was 42% and 25%, respectively, in the non-coronary cusp 28% and 13%, in the right coronary cusp 13% and 5%. AR grade 2 to 4 assessed by the method of Sellers immediately after TAVR device implantation was observed in 55 patients (31%). Multivariate regression analysis revealed that the overall annulus calcification (OR [95% CI] 1.48 [1.10-2.00]; p=0.0106), the overall LVOT calcification (1.93 [1.26-2.96]; p=0.0026), any moderate or severe LVOT calcification (5.37 [1.52-18.99]; p=0.0092), and asymmetric LVOT calcification were independent predictors of AR. Conclusions: Calcifications of the aortic annulus and LVOT are frequent in patients undergoing TAVR, and both the distribution and the severity of calcifications appear to be independent predictors of aortic regurgitation after device implantation. - See more at: http://www.pcronline.com/eurointervention/77th_issue/126/#sthash.Hzodgju5.dpuf
Resumo:
Helicobacter pylori infects the human gastric mucosa causing a chronic infection that is the primary risk factor for gastric cancer development. Recent studies demonstrate that H. pylori promotes tolerogenic dendritic cell (DC) development indicating that this bacterium evades the host immune response. However, the signaling pathways involved in modulating DC activation during infection remain unclear. Here, we report that H. pylori infection activated the signal transducer and activator of transcription 3 (STAT3) pathway in murine bone marrow-derived DCs (BMDCs) and splenic DCs isolated ex vivo. Isogenic cagA-, cagE-, vacA- and urease-mutants exhibited levels of phosphoSTAT3 that were comparable to in the wild-type (WT) parent strain. H. pylori-infected BMDCs produced increased immunosuppressive IL-10, which activated STAT3 in an autocrine/paracrine fashion. Neutralization of IL-10 prevented H. pylori-mediated STAT3 activation in both BMDCs and splenic DCs. In addition, anti-IL-10 treatment of infected H. pylori-BMDCs was associated with increased CD86 and MHC II expression and enhanced proinflammatory IL-1β cytokine secretion. Finally, increased CD86 and MHC II expression was detected in H. pylori-infected STAT3 knockout DCs when compared to WT controls. Together, these results demonstrate that H. pylori infection induces IL-10 secretion in DCs, which activates STAT3, thereby modulating DC maturation and reducing IL-1β secretion. These findings identify a host molecular mechanism by which H. pylori can manipulate the innate immune response to potentially favor chronic infection and promote carcinogenesis. © 2014 S. Karger AG, Basel.
Resumo:
BACKGROUND Extensive coronary artery disease (CAD) is associated with higher risk. In this substudy of the PLATO trial, we examined the effects of randomized treatment on outcome events and safety in relation to the extent of CAD. METHODS Patients were classified according to presence of extensive CAD (defined as 3-vessel disease, left main disease, or prior coronary artery bypass graft surgery). The trial's primary and secondary end points were compared using Cox proportional hazards regression. RESULTS Among 15,388 study patients for whom the extent of CAD was known, 4,646 (30%) had extensive CAD. Patients with extensive CAD had more high-risk characteristics and experienced more clinical events during follow-up. They were less likely to undergo percutaneous coronary intervention (58% vs 79%, P < .001) but more likely to undergo coronary artery bypass graft surgery (16% vs 2%, P < .001). Ticagrelor, compared with clopidogrel, reduced the composite of cardiovascular death, myocardial infarction, and stroke in patients with extensive CAD (14.9% vs 17.6%, hazard ratio [HR] 0.85 [0.73-0.98]) similar to its reduction in those without extensive CAD (6.8% vs 8.0%, HR 0.85 [0.74-0.98], Pinteraction = .99). Major bleeding was similar with ticagrelor vs clopidogrel among patients with (25.7% vs 25.5%, HR 1.02 [0.90-1.15]) and without (7.3% vs 6.4%, HR 1.14 [0.98-1.33], Pinteraction = .24) extensive CAD. CONCLUSIONS Patients with extensive CAD have higher rates of recurrent cardiovascular events and bleeding. Ticagrelor reduced ischemic events to a similar extent both in patients with and without extensive CAD, with bleeding rates similar to clopidogrel.
Resumo:
INTRODUCTION Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. METHODS Bone marrow-derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4(+) T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. RESULTS The frequency of PS particle-positive CD11c(+)/CD11b(+) BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4(+) T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. CONCLUSION These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4(+) T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles.
Resumo:
Immunological homeostasis in the respiratory tract is thought to require balanced interactions between networks of dendritic cell (DC) subsets in lung microenvironments in order to regulate tolerance or immunity to inhaled antigens and pathogens. Influenza A virus (IAV) poses a serious threat of long-term disruption to this balance through its potent pro-inflammatory activities. In this study, we have used a BALB/c mouse model of A/PR8/34 H1N1 Influenza Type A Virus infection to examine the effects of IAV on respiratory tissue DC subsets during the recovery phase following clearance of the virus. In adult mice, we found differences in the kinetics and activation states of DC residing in the airway mucosa (AMDC) compared to those in the parenchymal lung (PLDC) compartments. A significant depletion in the percentage of AMDC was observed at day 4 post-infection that was associated with a change in steady-state CD11b+ and CD11b- AMDC subset frequencies and significantly elevated CD40 and CD80 expression and that returned to baseline by day 14 post-infection. In contrast, percentages and total numbers of PLDC were significantly elevated at day 14 and remained so until day 21 post-infection. Accompanying this was a change in CD11b+and CD11b- PLDC subset frequencies and significant increase in CD40 and CD80 expression at these time points. Furthermore, mice infected with IAV at 4 weeks of age showed a significant increase in total numbers of PLDC, and increased CD40 expression on both AMDC and PLDC, when analysed as adults 35 days later. These data suggest that the rate of recovery of DC populations following IAV infection differs in the mucosal and parenchymal compartments of the lung and that DC populations can remain disrupted and activated for a prolonged period following viral clearance, into adulthood if infection occurred early in life.
Resumo:
In order to harness the unique properties of nanoparticles for novel clinical applications and to modulate their uptake into specific immune cells we designed a new library of homo- and hetero-functional fluorescence-encoded gold nanoparticles (Au-NPs) using different poly(vinyl alcohol) and poly(ethylene glycol)-based polymers for particle coating and stabilization. The encoded particles were fully characterized by UV-Vis and fluorescence spectroscopy, zeta potential and dynamic light scattering. The uptake by human monocyte derived dendritic cells in vitro was studied by confocal laser scanning microscopy and quantified by fluorescence-activated cell sorting and inductively coupled plasma atomic emission spectroscopy. We show how the chemical modification of particle surfaces, for instance by attaching fluorescent dyes, can conceal fundamental particle properties and modulate cellular uptake. In order to mask the influence of fluorescent dyes on cellular uptake while still exploiting its fluorescence for detection, we have created hetero-functionalized Au-NPs, which again show typical particle dependent cellular interactions. Our study clearly prove that the thorough characterization of nanoparticles at each modification step in the engineering process is absolutely essential and that it can be necessary to make substantial adjustments of the particles in order to obtain reliable cellular uptake data, which truly reflects particle properties.