957 resultados para Degradation of phenols


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degradation of resorbable polymeric devices often takes months to years. Accelerated testing at elevated temperatures is an attractive but controversial technique. The purposes of this paper include: (a) to provide a summary of the mathematical models required to analyse accelerated degradation data and to indicate the pitfalls of using these models; (b) to improve the model previously developed by Han and Pan; (c) to provide a simple version of the model of Han and Pan with an analytical solution that is convenient to use; (d) to demonstrate the application of the improved model in two different poly(lactic acid) systems. It is shown that the simple analytical relations between molecular weight and degradation time widely used in the literature can lead to inadequate conclusions. In more general situations the rate equations are only part of a complete degradation model. Together with previous works in the literature, our study calls for care in using the accelerated testing technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-12 (IL-12), p80, and IL-23 are structurally related cytokines sharing a p40 subunit. We have recently demonstrated that celecoxib and its COX-2-independent analogue 4-trifluoromethyl-celecoxib (TFM-C) inhibit secretion but not transcription of IL-12 (p35/p40) and p80 (p40/p40). This is associated with a mechanism involving altered cytokine-chaperone interaction in the endoplasmic reticulum (ER). In the present study, we found that celecoxib and TFM-C also block secretion of IL-23 (p40/p19 heterodimers). Given the putative ER-centric mode of these compounds, we performed a comprehensive RTPCR analysis of 23 ER-resident chaperones/foldases and associated co-factors. This revealed that TFM-C induced 1.5-3-fold transcriptional up-regulation of calreticulin, GRP78, GRP94, GRP170, ERp72, ERp57, ERdj4, and ERp29. However, more significantly, a 7-fold up-regulation of homocysteine-inducible ER protein (HERP) was observed. HERP is part of a high molecular mass protein complex involved in ER-associated protein degradation (ERAD). Using co-immunoprecipitation assays, we show that TFM-C induces protein interaction of p80 and IL-23 with HERP. Both HERP siRNA knockdown and HERP overexpression coupled to cycloheximide chase assays revealed that HERP is necessary for degradation of intracellularly retained p80 by TFM-C. Thus, our data suggest that targeting cytokine folding in the ER by small molecule drugs could be therapeutically exploited to alleviate in appropriate inflammation in autoimmune conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagon-like peptide-1(7-36)amide (tGLP-1) has attracted considerable potential as a possible therapeutic agent for type 2 diabetes. However, tGLP-1 is rapidly inactivated in vivo by the exopeptidase dipeptidyl peptidase IV (DPP IV), thereby terminating its insulin releasing activity. The present study has examined the ability of a novel analogue, His(7)-glucitol tGLP-1 to resist plasma degradation and enhance the insulin-releasing and antihyperglycemic activity of the peptide in 20-25-week-old obese diabetic ob/ob mice. Degradation of native tGLP-1 by incubation at 37 degreesC with obese mouse plasma was clearly evident after 3 h (35% intact). After 6 h, more than 87% of tGLP-1 was converted to GLP-1(9-36)amide and two further N-terminal fragments, GLP-1(7-28) and GLP-1(9-28). In contrast, His7-glucitol tGLP-1 was completely resistant to N-terminal degradation. The formation of GLP-1(9-36)amide from native tGLP-1 was almost totally abolished by addition of diprotin A, a specific inhibitor of DPP IV. Effects of tGLP-1 and His7-glucitol tGLP-1 were examined in overnight fasted obese mice following i.p. injection of either peptide (30 nmol/kg) together with glucose (18 mmol/kg) or in association with feeding. Plasma glucose was significantly lower and insulin response greater following administration of His7-glucitol tGLP-1 as compared to glucose alone. Native tGLP-1 lacked antidiabetic effects under the conditions employed, and neither peptide influenced the glucose-lowering action of exogenous insulin (50 units/kg). Twice daily s.c. injection of ob/ob mice with His(7)-glucitol tGLP-1 (10 nmol/kg) for 7 days reduced fasting hyperglycemia and greatly augmented the plasma insulin response to the peptides given in association with feeding. These data demonstrate that His(7)-glucitol tGLP-1 displays resistance to plasma DPP IV degradation and exhibits antihyperglycemic activity and substantially enhanced insulin-releasing action in a commonly used animal model of type 2 diabetes. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (t(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to t(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of e(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of ?(13)C ~ -13‰ (HCFC-22), ?(13)C ~ -35‰ (CFC-12) and ?(13)C ~ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pleiotropic effects of host defence peptides (HDPs), including the ability to kill microorganisms, enhance re-epithelialisation and increase angiogenesis, indicates a role for these important peptides as potential therapeutic agents in the treatment of chronic, non-healing wounds. However, the maintenance of peptide integrity, through resistance to degradation by the array of proteinases present at the wound site, is a prerequisite for clinical success. In this study we explored the degradation of exogenous LL-37, one such HDP, by wound fluid from diabetic foot ulcers to determine its susceptibility to proteolytic degradation. Our results suggest that LL-37 is unstable in the diabetic foot ulcer microenvironment. Following overnight treatment with wound fluid, LL-37 was completely degraded. Analysis of cleavage sites suggested potential involvement of both host- and bacterial-derived proteinases. The degradation products were shown to retain some antibacterial activity against Pseudomonas aeruginosa but were inactive against Staphylococcus aureus. In conclusion, our data suggest that stabilising selected peptide bonds within the sequence of LL-37 would represent an avenue for future research prior to clinical studies to address its potential as an exogenously-applied therapeutic in diabetic wounds. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioresorbable polymers such as PLA have an important role to play in the development of temporary implantable medical devices with significant benefits over traditional therapies. However, development of new devices is hindered by high manufacturing costs associated with difficulties in processing the material. A major problem is the lack of insight on material degradation during processing. In this work, a method of quantifying degradation of PLA using IR spectroscopy coupled with computational chemistry and chemometric modeling is examined. It is shown that the method can predict the quantity of degradation products in solid-state samples with reasonably good accuracy, indicating the potential to adapt the method to developing an on-line sensor for monitoring PLA degradation in real-time during processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential of ectomycorrhizal (ECM) associations to facilitate clean-up of soil contaminated with persistent organic pollutants (POPs) is considered. Most ECM fungi screened for degradation of POPs (e.g. polyhalogenated biphenyls, polyaromatic hydrocarbons, chlorinated phenols, and pesticides) are able to transform these compounds. Mineralization of toluene, tetrachloroethylene and 2,4-dichlorophenol in intact ECM-association rhizospheres has also been demonstrated. We review and consider the likely mechanisms by which ECM fungi can transform pollutants, the extent to which these capabilities may be utilized practically in bioremediation, along with the potential advantages and disadvantages of using ECM associations in bioremediation. (C) 2000 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioresorbable polymers increasingly are the materials of choice for implantable orthopaedic fixation devices. Controlled degradation of these polymers is vital for preservation of mechanical properties during tissue repair and controlled release of incorporated agents such as osteoconductive or anti-microbial additives. The work outlined in this paper investigates the use of low energy electron beam irradiation to surface modify polyhydroxyacid samples incorporating beta tricalcium phosphate (β-TCP). This work uniquely demonstrates that surface modification of bioresorbable polymers through electron beam irradiation allows for the early release of incorporated agents such as bioactive additives. Samples were e-beam irradiated at an energy of 125 keV and doses of either 150 kGy or 500 kGy. Irradiated and non-irradiated samples were degraded in phosphate buffered saline (PBS), to simulate bioresorption, followed by characterisation. The results show that low energy e-beam irradiation enhances surface hydrolytic degradation in comparison to bulk and furthermore allows for earlier release of incorporated calcium via dissolution into the surrounding medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inland waters are of global biogeochemical importance. They receive carbon inputs of ~ 4.8 Pg C/ y of which, 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One aspect of this is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. their use as carbon (C) and nitrogen (N) sources within aquatic systems. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We experimentally tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and water sampled from the Oberer Seebach stream (Austria). Each incubation experienced a 16:8 light:dark regime, with metabolism monitored via changes in oxygen concentrations between photoperiods. The relative fate of the organo-mineral particles was quantified by tracing the mineralization of the 13C and 15N labels and their incorporation into microbial biomass. Here we present the initial results of 13C-label mineralization, incorporation and retention within dissolved organic carbon pool. The results indicate that 514 (± 219) μmol/ mmol of the 13:15N labeled free amino acids were mineralized over the 7-day incubations. By contrast, 186 (± 97) μmol/ mmol of the mineral-sorbed amino acids were mineralized over a similar period. Thus, organo-mineral complexation reduced amino acid mineralization by ~ 60 %, with no differences observed between the streamwater and biofilm assemblages. Throughout the incubations, biofilms were observed to leach dissolved organic carbon (DOC). However, within the streamwater assemblage the presence of both organo-mineral particles and kaolin particles was associated with significant DOC removal (-1.7 % and -7.5 % respectively). Consequently, the study demonstrates that mineral and organo-mineral particles can limit the availability of DOC in aquatic systems, providing nucleation sites for flocculation and fresh mineral surfaces, which facilitate OM-sorption. The formation of these organo-mineral particles subsequently restricts microbial OM degradation, potentially altering the transport and facilitating the burial of OM within streams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: In addition to their afferent role in detection and signalling noxious stimuli, neuropeptide-containing sensory nerves may initiate and maintain chronic inflammation in diseases such as periodontitis by an efferent process known as neurogenic inflammation. Neuropeptides are susceptible to cleavage by peptidases, and therefore, the exact location and level of expression of peptidases are major determinants of neuropeptide action. Previous studies in our laboratory showed that enzyme components of gingival crevicular fluid (GCF) from periodontitis sites selectively inactivated the neuropeptide calcitonin gene-related peptide (CGRP), known to have a role in inhibiting osteoclastic bone resorption. Objectives: The aim of this study was to design and synthesise a specific inhibitor to prevent the degradation of CGRP by components of GCF. Methods: A hydroxamate-based inhibitor with a biotinylated tag was designed to ensure selectivity for CGRP and ease of use for future purification strategies. The biotinylated peptide hydroxamate contained the P1-P4 amino acid sequence of the potential CGRP cleavage site and was synthesised by solid-phase methods using standard Fmoc chemistry. Inhibition of CGRP metabolism by GCF was determined by MALDI-mass spectrometry (MALDI-MS) using pooled GCF samples from periodontitis patients as a crude source of the CGRP-degrading enzyme. Results: MALDI-MS analysis of CGRP degradation showed almost complete inhibition in the presence of the biotinylated inhibitor. Our results showed that the rate-limiting step in the cleavage of CGRP is endopeptidase cleavage, followed by carboxypeptidase attack. Conclusion: This study demonstrates that the enzyme component of GCF responsible for the degradation of CGRP can be inhibited by a biotinylated hydroxamate modelled on a potential endopeptidase cleavage site. The biotin tag on the inhibitor will facilitate our future purification of the CGRP-cleavage enzyme using a streptavidin-agarose column.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds commonly found as soil contaminants. Fungal degradation is considered as an environmentally friendly and cost-effective approach to remove PAHs from soil. Acenaphthylene (Ace) and Benzo[a]anthracene (BaA) are two PAHs that can coexist in soils; however, the influence of the presence of each other on their biodegradation has not been studied. The biodegradation of Ace and BaA, alone and in mixtures, by the white rot fungus Pleurotus ostreatus was studied in a sandy soil. Materials and methods Experimental microcosms containing soil spiked with different concentrations of Ace and BaAwere inoculated with P. ostreatus. Initial (t 0) and final (after 15 days of incubation) soil concentrations of Ace and BaA were determined after extraction of the PAHs. Results and discussion P. ostreatus was able to degrade 57.7% of the Ace in soil spiked at 30 mg kg−1 dry soil and 65.8% of Ace in soil spiked at 60 mg kg−1 dry soil. The degradation efficiency of BaA by P. ostreatus was 86.7 and 77.4% in soil spiked with Ace at 30 and 60 mg kg−1 dry soil, respectively. After 15 days of incubation, there were no significant differences in Ace concentration between soil spiked with Ace and soil spiked with Ace + BaA, irrespective of the initial soil concentration of both PAHs. There were also no differences in BaA concentration between soil spiked with BaA and soil spiked with BaA + Ace. Conclusions The results indicate that the fungal degradation of Ace and BaA was not influenced by the presence of each other’s PAH in sandy soil. Bioremediation of soils contaminated with Ace and BaA using P. ostreatus is a promising approach to eliminate these PAHs from the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de mestrado em Biologia Humana e Ambiente, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonylphenol polyethoxylates (NPEOs) are surfactants found ubiquitously in the environment due to widespread industrial and domestic use. Biodegradation of NPEOs produces nonylphenol (NP), an endocrine disruptor. Sewage sludge application introduces NPEOs and NP into soils, potentially leading to accumulation in soils and crops. We examined degradation of NP and nonyl phenol-12-ethoxylate (NP12EO) in four soils. NP12EO degraded rapidly (initial half time 0.3-5 days). Concentrations became undetectable within 70-90 days, with a small increase in NP concentrations after 30 days. NP initially degraded quickly (mean half time 11.5 days), but in three soils a recalcitrant fraction of 26-35% remained: the non-degrading fraction may consist of branched isomers, resistant to biodegradation. Uptake of NP by bean plants was also examined. Mean bioconcentration factors for shoots and seeds were 0.71 and 0.58, respectively. Removal of NP from the soil by plant uptake was negligible (0.01-0.02% of initial NP). Root concentrations were substantially higher than shoot and seed concentrations. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two commercial enzyme products, Depol 40 (D) and Liquicell 2500 (L), were characterised from a biochemical standpoint and their potential to improve rumen degradation of forages was evaluated in vitro. Enzyme activities were determined at pH 5.5 and 39 degreesC. Analysis of the enzyme activities indicated that L contained higher xylanase and endoglucanase, but lower exoglucanase, pectinase and alpha-amylase activities than D. The Reading Pressure Technique (RPT) was used to investigate the effect of enzyme addition on the in vitro gas production (GP) and organic matter degradation (OMD) of alfalfa (Medicago sativa L.) stems and leaves. A completely randomised design with factorial arrangement of treatments was used. Both alfalfa fractions were untreated or treated with each enzyme at four levels, 20 h before incubation with rumen fluid. Each level of enzyme provided similar amounts of filter paper (D1, L1), endoglucanase (D2, L2), alpha-L-arabinofuranosidase (D3, L3) and xylanase units (D4, L4) per gram forage DM. Enzymes increased the initial OMD in both fractions, with improvements of up to 15% in leaves (D4) and 8% in stems (L2) after 12 h incubation. All enzyme treatments increased the extent of degradation (96 h incubation) in the leaf fractions, but only L2 increased final OMD in the stems. Direct hydrolysis of forage fractions during the pre-treatment period did not fully account for the magnitude of the increases in OMD, suggesting that the increase in rate of degradation was achieved through a combined effect of direct enzyme hydrolysis and synergistic action between the exogenous (applied) and endogenous (rumen) enzymes. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was carried out to determine the influence of fibrolytic enzymes derived from mesophilic or thermophilic fungal sources, added at ensiling, on time-course fermentation characteristics and in vitro rumen degradation of maize silage. The mesophilic enzyme was a commercial product derived from Trichodenna reesei (L), whereas the thermophilic enzyme was a crude extract produced from Thermoascus aurantiacus (Ta) in this laboratory. The fungus was cultured using maize cobs as a carbon source. The resulting fermentation extract was deionised to remove sugars and characterised for its protein concentration, main and side enzymic activities, optimal pH, protein molecular mass and isoelectric point. In an additional study, both enzymes were added to maize forage (333.5 g DM/kg, 70.0, 469.8, 227.1 and 307.5 g/kg DM of CP, NDF, ADF and starch, respectively) at two levels each, normalized according to xylanase activity, and ensiled in 0.5 kg capacity laboratory minisilos. Duplicate silos were opened at 2, 4, 8, 15, and 60 days after ensiling, and analysed for chemical characteristics. Silages from 60 days were bulked and in vitro gas production (GP) and organic matter degradability (OMD) profiles evaluated using the Reading Pressure Technique (RPT), in a completely randomised design. The crude enzyme extract contained mainly xylanase and endoglucanase activities, with very low levels of exoglucanase, which probably limited hydrolysis of filter paper. The extract contained three major protein bands of between 29 and 55 kDa, with mainly acidic isoelectric points. Ensiling maize with enzymes lowered (P < 0.05) the final silage pH, with this effect being observed throughout the ensiling process. All enzyme treatments reduced (P < 0.05) ADF contents. Treatments including Ta produced more gas (P < 0.05) than the controls after 24 h incubation in vitro, whereas end point gas production at 96 h was not affected. Addition of Ta increased (P < 0.01) OMD after 12 h (410 and 416 g/kg versus 373 g/kg), whereas both L and Ta increased (P < 0.05) OMD after 24 h. Addition of enzymes from mesophilic or thermophilic sources to maize forage at ensiling increased the rate of acidification of the silages and improved in vitro degradation kinetics, suggesting an improvement in the nutritive quality. (C) 2003 Elsevier B.V All rights reserved.