992 resultados para DNA viruses
Resumo:
Although human T-lymphotropic virus type I (HTLV-I) exhibits high genetic stability, as compared to other RNA viruses and particularly to human immunodeficiency virus (HIV), genotypic subtypes of this human retrovirus have been characterized in isolates from diverse geographical areas. These are currently believed not to be associated with different pathogenetic outcomes of infection. The present study aimed at characterizing genotypic subtypes of viral isolates from 70 HTLV-I-infected individuals from São Paulo, Brazil, including 42 asymptomatic carriers and 28 patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), using restricted fragment length polymorphism (RFLP) analysis of long terminal repeat (LTR) HTLV-I proviral DNA sequences. Peripheral blood mononuclear cell lysates were amplified by nested polymerase chain reaction (PCR) and amplicons submitted to enzymatic digestion using a panel of endonucleases. Among HTLV-I asymptomatic carriers, viral cosmopolitan subtypes A, B, C and E were identified in 73.8%, 7.1%, 7.1% and 12% of tested samples, respectively, whereas among HAM/TSP patients, cosmopolitan A (89.3%), cosmopolitan C (7.1%) and cosmopolitan E (3.6%) subtypes were detected. HTLV-I subtypes were not statistically significant associated with patients' clinical status. We also conclude that RFLP analysis is a suitable tool for descriptive studies on the molecular epidemiology of HTLV-I infections in our environment.
Resumo:
American trypanosomiasis is a common zoonosis in Colombia and Trypanosoma cruzi presents a wide distribution throughout the country. Although some studies based on enzyme electrophoresis profiles have described the population structure of the parasite, very few molecular analyses of genotipic markers have been conducted using Colombian strains. In this study, we amplified the non-transcribed spacer of the mini-gene by PCR, typing the isolates as T. cruzi I, T. cruzi zymodeme 3 or T. rangeli. In addition, the internal transcribed spacers of the ribosomal gene concomitant with the 5.8S rDNA were amplified and submitted to restriction fragment polymorphism analysis. The profiles were analyzed by a numerical methodology generating a phenetic dendrogram that shows heterogeneity among the T. cruzi isolates. This finding suggests a relationship between the complexity of the sylvatic transmission cycle in Colombia and the diversity of the sylvan parasites.
Resumo:
Review of : 50 Years of DNA Foreword by Phil Campbell, edited by Julie Clayton and Carina Dennis Palgrave Macmillan
Resumo:
Translesion replication is carried out in Escherichia coli by the SOS-inducible DNA polymerase V (UmuC), an error-prone polymerase, which is specialized for replicating through lesions in DNA, leading to the formation of mutations. Lesion bypass by pol V requires the SOS-regulated proteins UmuD' and RecA and the single-strand DNA-binding protein (SSB). Using an in vitro assay system for translesion replication based on a gapped plasmid carrying a site-specific synthetic abasic site, we show that the assembly of a RecA nucleoprotein filament is required for lesion bypass by pol V. This is based on the reaction requirements for stoichiometric amounts of RecA and for single-stranded gaps longer than 100 nucleotides and on direct visualization of RecA-DNA filaments by electron microscopy. SSB is likely to facilitate the assembly of the RecA nucleoprotein filament; however, it has at least one additional role in lesion bypass. ATPgammaS, which is known to strongly increase binding of RecA to DNA, caused a drastic inhibition of pol V activity. Lesion bypass does not require stoichiometric binding of UmuD' along RecA filaments. In summary, the RecA nucleoprotein filament, previously known to be required for SOS induction and homologous recombination, is also a critical intermediate in translesion replication.
Resumo:
A total of 106 women with vaginitis in Nicaragua were studied. The positive rate for the identification of Candida species was 41% (44 positive cultures out of 106 women with vaginitis). The sensitivity of microscopic examination of wet mount with the potassium hydroxide (KOH) was 61% and 70% with Gram's stain when using the culture of vaginal fluid as gold standard for diagnosis of candidiasis. Among the 44 positives cultures, isolated species of yeast from vaginal swabs were C. albicans (59%), C. tropicalis (23%), C. glabrata (14%) and C. krusei (4%). This study reports the first characterization of 26 C. albicans stocks from Nicaragua by the random amplified polymorphic DNA method. The genetic analysis in this small C. albicans population showed the existence of linkage disequilibrium, which is consistent with the hypothesis that C. albicans undergoes a clonal propagation.
Resumo:
In the last decade microsatellites have become one of the most useful genetic markers used in a large number of organisms due to their abundance and high level of polymorphism. Microsatellites have been used for individual identification, paternity tests, forensic studies and population genetics. Data on microsatellite abundance comes preferentially from microsatellite enriched libraries and DNA sequence databases. We have conducted a search in GenBank of more than 16,000 Schistosoma mansoni ESTs and 42,000 BAC sequences. In addition, we obtained 300 sequences from CA and AT microsatellite enriched genomic libraries. The sequences were searched for simple repeats using the RepeatMasker software. Of 16,022 ESTs, we detected 481 (3%) sequences that contained 622 microsatellites (434 perfect, 164 imperfect and 24 compounds). Of the 481 ESTs, 194 were grouped in 63 clusters containing 2 to 15 ESTs per cluster. Polymorphisms were observed in 16 clusters. The 287 remaining ESTs were orphan sequences. Of the 42,017 BAC end sequences, 1,598 (3.8%) contained microsatellites (2,335 perfect, 287 imperfect and 79 compounds). The 1,598 BAC end sequences 80 were grouped into 17 clusters containing 3 to 17 BAC end sequences per cluster. Microsatellites were present in 67 out of 300 sequences from microsatellite enriched libraries (55 perfect, 38 imperfect and 15 compounds). From all of the observed loci 55 were selected for having the longest perfect repeats and flanking regions that allowed the design of primers for PCR amplification. Additionally we describe two new polymorphic microsatellite loci.
Resumo:
We evaluated the usefulness of the combination of three plasmids encoding tegumental (pECL and pSM14) and muscular (pIRV5) antigens of the Schistosoma mansoni on improving the protective immunity over the use of a single antigen as DNA vaccines. Female BALB/c mice were inoculated twice with 25 µg DNA plasmid within two weeks interval. The challenge was performed with 80 cercarias of a regional isolate of S. mansoni (SLM) one week after the last immunization. Six weeks after challenge, all mice were perfused for worm load determination. The following groups were analyzed: saline; empty vector; monovalent formulations of pECL; pSM14 and pIRV5 and also double combinations of pECL/pIRV5 and pIRV5/pSM14 and a triple combination of pECL/pIRV5/pSM14. The protection was expressed as a percentage of worm loads in each group compared with the saline group. The results obtained were 41% (p < 0.05); 52% (p < 0.05); 51% (p < 0.05); 48% (p < 0.05); 55% (p < 0.05); 45% (p < 0.05); 65% (p < 0.05) for each group respectively.
Resumo:
As Schistosoma sp. control programs are chiefly based on treatment of infected population, adequate case finding has a crucial role. The available diagnostic methods are far from ideal, since the search for eggs in stools and the detection of circulating antigens lack sensitivity in low prevalence and post-treatment situations and antibody detection lacks specificity. In most endemic foci, repeated treatment of infected people leaves a number of non-diagnosed and consequently non-treated persons, enough to maintain a persistent residue of 5 to 10% prevalence. In an attempt to surpass these diagnostic limitations we have developed a polymerase chain reaction (PCR) for the detection of Schistosoma sp. in feces that, in a first population study, has shown to be more sensitive than three-repeated stool Kato-Katz examination. The PCR may constitute a valuable tool for the diagnosis of the Schistosoma sp. infection in special situations, when high sensitivity and specificity are required and infrastructure is available.
Resumo:
We report the molecular characterization of a novel reiterated family of transcribed oligo(A)-terminated, interspersed DNA elements in the genome of Trypanosoma cruzi. Steady-state level of transcripts of this sequence family appeared to be developmentally regulated, since only in the replicative forms the parasite showed expression of related sequences with a major band around 3 kb. The presence of frame shifts or premature stop codons predicts that transcripts are not translated. The sequence family also contains truncated forms of retrotransposons elements that may become potential hot spots for retroelement insertion. Sequences homologous to this family are interspersed at many chromosomes including the subtelomeric regions.
Resumo:
During genetic recombination a heteroduplex joint is formed between two homologous DNA molecules. The heteroduplex joint plays an important role in recombination since it accommodates sequence heterogeneities (mismatches, insertions or deletions) that lead to genetic variation. Two Escherichia coli proteins, RuvA and RuvB, promote the formation of heteroduplex DNA by catalysing the branch migration of crossovers, or Holliday junctions, which link recombining chromosomes. We show that RuvA and RuvB can promote branch migration through 1800 bp of heterologous DNA, in a reaction facilitated by the presence of E.coli single-stranded DNA binding (SSB) protein. Reaction intermediates, containing unpaired heteroduplex regions bound by SSB, were directly visualized by electron microscopy. In the absence of SSB, or when SSB was replaced by a single-strand binding protein from bacteriophage T4 (gene 32 protein), only limited heterologous branch migration was observed. These results show that the RuvAB proteins, which are induced as part of the SOS response to DNA damage, allow genetic recombination and the recombinational repair of DNA to occur in the presence of extensive lengths of heterology.
Resumo:
SummaryResearch projects presented in this thesis aimed to investigate two major aspects of the arenaviruses life cycle in the host cell: viral entry and the biosynthesis of the viral envelope glycoprotein.Old World arenaviruses (OWAV), such as Lassa virus (LASV) and lymphocytic choriomeningitis virus (LCMV), attach to the cell by binding to their receptor, alpha-dystroglycan. Virions are then internalized by a largely unknown pathway of endocytosis and delivered to the late endosome/lysosome where fusion occurs at low pH. In the major project of my thesis, we sought to identify cellular factors involved in OWAV cell entry. Our work indicates that OWAV cell entry requires microtubular transport and a functional multivesicular body (MVB) compartment. Infection indeed depends on phosphatidyl inositol 3-kinase (PI3K) activity and lysobisphosphatidic acid (LBPA), a lipid found in membranes of intraluminal vesicles (ILVs) of the MVB. We further found a requirement of factors that are part of the endosomal sorting complex required for transport (ESCRT), involved in the formation of ILVs. This suggests an ESCRT-mediated sorting of virus- receptor complex during the entry process.During viral replication, biosynthesis of viral glycoprotein takes place in the endoplasmic reticulum (ER) of the host cell. When protein load exceeds the folding capacity of the ER, the accumulation of unfolded proteins is sensed by three ER resident proteins, activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1) and PKR-like ER kinase (PERK), whose signaling induces the cellular unfolded protein response (UPR). Our results indicate that acute LCMV infection transiently induces the activation of the ATF6 branch of the UPR, whereas the PERK, and IRE1 axis of UPR are neither triggered nor blocked during infection. Our data also demonstrate that activation of ATF6 pathway is required for optimal viral replication during acute infection.The formation of the mature, fusion-active form of arenaviruses glycoproteins requires proteolytic cleavage mediated by the cellular protease subtilisin kexin isozyme-1 (SKI-l)/site-l protease (SIP). We show that targeting the SKI-1/S1P enzymatic activity with specific inhibitors is a powerful strategy to block arenaviruses productive infection. Moreover, characterization of protease function highlights differences in processing between cellular and viral substrates, opening new possibilities in term of drug development against human pathogenic arenaviruses.RésuméLes projets de recherche présentés dans cette thèse visaient à étudier deux aspects du cycle de vie des arenavirus: l'entrée du virus dans la cellule hôte et la biosynthèse de la glycoprotéine durant la réplication virale.Les arenavirus du vieux monde (OWAV), tels que le virus de Lassa (LASV) et le virus de la chorioméningite lymphocytaire (LCMV) s'attachent à la cellule hôte en se liant à leur récepteur, l'alpha-dystroglycane. Les virions sont ensuite intemalisés par une voie d'endocytose inconnue et livrés à l'endosome tardif/lysosome, où le pH acide permet la fusion entre l'enveloppe virale et la membrane du compartiment. Le projet principal de ma thèse consistait à identifier les facteurs cellulaires impliqués dans l'entrée des OWAV dans la cellule hôte. Nos résultats indiquent que l'entrée des OWAV nécessite le transport microtubulaire et la présence d'un corps multivésiculaire (MVB) fonctionnel. L'infection dépend en effet de l'activité de phosphatidyl inositol 3-kinase (PI3K) et de lysobisphosphatidic acid (LBPA), un lipide présent dans les membranes des vésicules intraluminales (ILVs) du MVB. Nous avons également trouvé l'implication de facteurs constituant l'endosomal sorting complex required for sorting (ESCRT) qui joue un rôle dans la formation des ILVs. Ces donnés suggèrent l'incorporation du complexe virus-récepteur dans des ILVs durant le processus d'entrée.Lors de la réplication virale, la biosynthèse de la glycoprotéine virale a lieu dans le réticulum endoplasmique (ER) de la cellule hôte. Lorsque la charge de protéines nouvellement synthétisées excède la capacité de pliage des protéines dans le ER, l'accumulation de protéines mal pliées est détectée par trois facteurs: activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1) et PKR-like ER kinase (PERK). Leur signalisation constitue la réponse cellulaire face aux protéines mal pliées (UPR). Nos résultats montrent que l'infection aiguë avec LCMV induit transitoirement l'activation de la voie de signalisation ATF6 alors que les axes PERK et IRE1 de l'UPR ne sont ni induits ni bloqués pendant l'infection. Nos données prouvent également que l'activation de la voie ATF6 est nécessaire à une réplication virale optimale lors de l'infection aiguë avec LCMV.La maturation des glycoprotéines des arenavirus nécessite un clivage protéolytique par la protéase cellulaire subtilisin kexin isozyme-1 (SKI-l)/site-l protease (SIP). Nous avons démontré que le ciblage de l'activité enzymatique de SKI-1/SIΡ avec des inhibiteurs spécifiques est une stratégie prometteuse pour bloquer l'infection par les arenavirus. La caractérisation du mécanisme d'action de la protéase a, par ailleurs, révélé des différences au niveau du clivage entre les substrats cellulaires et viraux, ce qui ouvre de nouvelles perspectives en terme de développement de médicaments contre les arenavirus pathogènes pour l'homme.
Resumo:
The use of in situ techniques to detect DNA and RNA sequences has proven to be an invaluable technique with paraffin-embedded tissue. Advances in non-radioactive detection systems have further made these procedures shorter and safer. We report the detection of Trypanosoma cruzi, the causative agent of Chagas disease, via indirect and direct in situ polymerace chain reaction within paraffin-embedded murine cardiac tissue sections. The presence of three T. cruzi specific DNA sequences were evaluated: a 122 base pair (bp) sequence localized within the minicircle network, a 188 bp satellite nuclear repetitive sequence and a 177 bp sequence that codes for a flagellar protein. In situ hybridization alone was sensitive enough to detect all three T. cruzi specific DNA sequences.
Resumo:
Outbreaks of gastroenteritis have occurred among consumers of raw or undercooked shellfish harvested from faecally polluted waters. A multiplex reverse transcription-polymerase chain reaction (RT-PCR) was applied for the simultaneous detection of hepatitis A virus (HAV), poliovirus (PV) and simian rotavirus (RV-SA11) and compared with specific primers for each genome sequence. Three amplified DNA products representing HAV (192 bp), PV (394 bp) and RV (278 bp) were identified when positive controls were used. However, when tested on experimentally contaminated raw oysters, this method was not able to detect the three viruses simultaneously. This is probably due to the low concentration of viral RNAs present in oyster extract which were partially lost during the extracts preparation.
Resumo:
Random amplified polymorphic DNA (RAPD) markers were used to analyze 119 DNA samples of three Colombian Anopheles nuneztovari populations to study genetic variation and structure. Genetic diversity, estimated from heterozygosity, averaged 0.34. Genetic flow was greater between the two populations located in Western Colombia (F ST: 0.035; Nm: 6.8) but lower between these two and the northeastern population (F ST: 0.08; Nm: 2.8). According to molecular variance analysis, the genetic distance between populations was significant (phiST 0.1131, P < 0.001). The variation among individuals within populations (phiST 0.8869, P < 0.001)was also significant, suggesting a greater degree of population subdivision, not considered in this study. Both the parameters evaluated and the genetic flow suggest that Colombian An. nuneztovari populations are co-specific.
Resumo:
A survey was conducted in the hemodialysis population of the state of Tocantins, Brazil, aiming to assess the prevalence of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections, to analyze associated risk factors, and also to investigate these viruses genotypes distribution. During January and March 2001, all patients (n = 100) were interviewed at the unique dialysis unit in Tocantins. Blood samples were collected and serum samples were screened for HBV serological markers. Hepatitis B surface antigen positive samples were tested for HBV DNA. All samples were also tested for anti-HCV antibodies and HCV RNA. An overall prevalence of 45% was found for HBV infection (4% were HBsAg/anti-HBc positive, 2% were anti-HBc only and 39% had anti-HBc/anti-HBs markers). Concerning HCV infection, anti-HCV and HCV RNA were detected in 13% and 14% of the subjects, respectively. Three patients were HCV RNA positive and anti-HCV negative, resulting in an overall HCV prevalence of 16%. Univariate analysis of risk factors showed that only shift and length of time on hemodialysis were associated with HBV and HCV positivity, respectively. Among the four HBsAg-positive samples, HBV DNA was detected in three of them, which were identified as genotype A by restriction fragment length polymorphism (RFLP) analysis. All 14 HCV RNA-positive samples were genotyped by INNO-LiPA. Genotypes 1a and 3a were found in 85% and 15%, respectively. The present data show low HBsAg and HCV prevalence rates. The risk factors associated with HBV and HCV positivity suggest that nosocomial transmission may influence in spreading these viruses in the dialysis unit studied.