932 resultados para DENTIN SURFACES
Resumo:
Statement of problem. Sealing ability and bond strengths of total-etch and self-etch dentin adhesives used for immediate dentin sealing have not been assessed and established.Purpose. The purpose of this study was to determine the effectiveness of immediate dentin sealing (IDS) using total-etch or self-etch dentin adhesives on microleakage and microtensile bond strength.Material and methods. Twenty recently extracted molars were selected, and standard MOD inlay preparations were made with the gingival margins located below the cemento-enamel unction. The teeth were assigned to 4 experimental groups (n=5) according to the indirect composite restoration cementation technique used: (1) immediate dentin sealing with Adper Single Bond (TEBI); (2) conventional adhesive cementation technique using Adper Single Bond (TEAI); (3) immediate dentin sealing using Adper Prompt L-Pop (SEBI); or (4) conventional adhesive cementation technique using Adper Prompt L-Pop (SEAI). The restored teeth were thermal cycled 1,000 times between 5 degrees and 55 degrees C and then immersed in 50% ammoniacal silver nitrate. Three specimens per restoration were evaluated for microleakage, according to predefined scores, and submitted to Friedman's test (alpha-.05). The specimens were then sectioned to obtain 0.8 +/- 0.2-mm-thick sticks (with n ranging from 32 to 57 specimens) and submitted to microtensile bond strength (mu TBS) testing. The obtained data were submitted to 2-way ANOVA test (alpha=.05).Results. None of the experimental groups demonstrated complete elimination of marginal microleakage. There were significant differences in microleakage of the tested adhesives (P>.001). IDS microleakage scores were similar to those obtained using the conventional cementation technique (CCT) for both adhesives. The highest mean bond strengths were obtained with TEBI (51.1 MPa), whereas SEAI showed the lowest mean bond strengths (1.7 MPa). IDS resulted in significantly higher bond strengths than CCT (P<.001).Conclusions. Total-etch and self-etch adhesives have a significant effect on IDS. IDS resulted in high bond strengths for both adhesives; however, the microleakage was similar to that obtained with CCT (J Prosthet Dent 2009;102:1-9)
Resumo:
The aim of this study was to evaluate the persistence of resin cement residues after dentin surface cleaning with different alcohol-based solutions or an essential oil (eucalyptol). Forty bovine teeth were sectioned in order to expose pulp chamber dentin to be washed with 1.0 mL of 2.5% sodium hypochlorite (NaOCl), followed by 0.1 mL of 17% EDTA application for 3 min, and final irrigation with 2.5% NaOCl. The specimens were air dried and resin-based cement was rubbed onto the dentine surface with a microbrush applicator. After 15 min, the surface was scrubbed with a cotton pellet and moistened with different dentin cleaning solutions, compounding the following groups: G195% ethanol, G270% ethanol, G370% isopropyl alcohol, or G4eucalyptol. The dentin was scrubbed until the cement residues could not be visually detected. Sections were then processed for SEM and evaluated at x 500 magnification. Scores were attributed to each image according to the area covered by residual sealer, and data were subjected to KruskalWallis at 5% significance. Eucalyptol promoted the most adequate dentin cleaning, although no statistical difference was detected amongst the groups (P > 0.05), except between the eucalyptol and 70% ethanol groups (P < 0.05). All the evaluated dentin cleaning solutions were unable to completely remove the cement residues from the dentin surface. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm(2). ne adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm(2). Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser.
Resumo:
Objective. The objective of this study was to evaluate the penetration of 2.5% NaOCl associated with 17.0% EDTA, 1.0% citric acid, and 1.0% peracetic acid into dentin tubules.Study design. The roots of 44 bovine incisors were cross-sectioned and 5-mm-long fragments were produced from their middle thirds. The specimens were instrumented with ProTaper hand files, stained in crystal violet, then sectioned mesiodistally. The buccal fragments were divided into 4 groups (n = 9) and subjected to 2 consecutive 10-minute immersion periods in one of the following acid solutions combined with 2.5% NaOCl: 17.0% EDTA (group 1), 1.0% citric acid (group 2), and 1.0% peracetic acid (group 3). Nine fragments were immersed in 2.5% NaOCl (group 4). The analysis of the penetration of NaOCl solutions into dentin was performed by measuring the depth of crystal violet stain that was bleached using a steromicroscope under x50 magnification. Statistical comparisons were carried out by Kruskal-Wallis and Dunn's tests at the 5% significance level.Results. Group 1 showed less penetration into dentin than group 4 (P < .05). No statistically significant differences were observed among groups 2, 3, and 4 (P > .05).Conclusions. Association of NaOCl with acid solutions did not increase its penetration depth into root dentin. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112:e155-e159)
Resumo:
This study evaluated comparatively by scanning electron microscopy (SEM) the effect of different dental conditioners on dentin micromorphology, when used according to the same protocol. Forty dentin sticks were obtained from 20 caries-free third human molars and were assigned to 4 groups corresponding to 3 conditioners (phosphoric acid 37%, Clearfil SE Bond and iBond) and an untreated control group. After application of the conditioners, the specimens were immersed in 50% ethanol solution during 10 s, chemically fixed and dehydrated to prepare them to SEM analysis. In the control group, dentin surface was completely covered by smear layer and all dentinal tubules were occluded. In the phosphoric acid-etched group, dentin surface was completely clean and presented exposed dentinal tubule openings; this was the only group in which the tubules exhibited the funnel-shaped aspect. In the groups conditioned with Clearfil SE Bond primer and iBond, which are less acidic than phosphoric acid, tubule openings were occluded or partially occluded, though smear layer removal was observed. SE Bond was more efficient in removing the smear layer than iBond. In the Clearfil SE Bond group, the cuff-like aspect of peritubular dentin was more evident. It may be concluded all tested conditioners were able to change dentin morphology. However, it cannot be stated that the agent aggressiveness was the only cause of the micromorphological alterations because a single morphological pattern was not established for each group, but rather an association of different aspects, according to the aggressiveness of the tested conditioner.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: This work evaluated the osteoconductive properties of autogenous demineralized dentin matrix (ADDM) on surgical bone defects in the parietal bone of rabbits, using the guided bone regeneration technique and polytetrafluoroethylene (PTFE) membrane. Materials and Methods: Surgical bone defects were created in 24 adult rabbits and repaired with either ADDM and PTFE (experimental group) or PTFE alone (control group). The ADDM had been obtained from the central incisors of the experimental rabbits. The rabbits were sacrificed after 15, 30, 60, and 90 days and the defects examined radiographically and histologically. Results: Radiographically, the defects in the experimental animals achieved radiopacity more quickly than the defects in the control group. Discussion: After 15, 30, 60, and 90 days of observation following surgery, the ADDM slices appeared to stimulate new bone formation. The dentin slices were completely incorporated into the new bone tissue and were resorbed during the bone repair. Conclusions: Bone repair was accelerated on the bone defects treated with ADDM when compared to the control group.
Resumo:
Objective. The purpose of this study was to evaluate the effects of endodontic irrigants on the microhardness of root canal dentin.Study design. Thirty extracted single-rooted human teeth were used. The crowns were sectioned at the cementoenamel junction. Each root was transversely sectioned into cervical, middle, and apical segments, resulting in 90 specimens. The 3 sections of each root were separately mounted in an individual silicon device with acrylic resin. The specimens were randomly divided into the following 3 groups (n = 30), according to the irrigant solution used: (1) group 1, control (saline solution); (2) group 2, 2% chlorhexidine gluconate solution; and (3) group 3, 1% sodium hypochlorite (NaOCl). After 15 minutes of irrigation, dentin microhardness was measured on each section at 500 mu m and 1000 mu m from the pulp-dentin interface with a Vickers diamond microhardness tester in Vickers hardness number (VHN).Results. Data obtained were analyzed using analysis of variance and the Tukey test (5%). Specimens irrigated with 2% chlorhexidine (group 2) or 1% NaOCl (group 3) presented lower values of dentin microhardness, with significant difference in relation to the control group (P < .05).Conclusion. It could be concluded that chlorhexidine and NaOCl solutions significantly reduced the microhardness of root canal dentin at 500 mu m and 1000 mu m from the pulp-dentin interface.
Resumo:
Objective: The purpose of this study was to evaluate the sealing ability of castor oil polymer (COP), mineral trioxide aggregate (MTA) and glass ionomer cement (GIC) as root-end filling materials. Forty-five single-rooted human teeth were cleaned and prepared using a step-back technique. The apical third of each root was resected perpendicularly to the long axis direction. All teeth were obturated with gutta-percha and an endodontic sealer. After, a root-end cavity with 1.25-mm depth was prepared using a diamond bur. The specimens were randomly divided into three experimental groups (n = 15), according to the root-end filling material used: G1) COP; G2) MTA; G3) GIC. The external surfaces of the specimens were covered with epoxy adhesive, except the root-end filling. The teeth were immersed in rhodamine B dye for 24 hours. Then, the roots were sectioned longitudinally and the linear dye penetration at the dentin/material interface was determined using a stereomicroscope. ANOVA and Tukey's tests were used to compare the three groups. The G1 group (COP) presented smaller dye penetration, statistically different than the G2 (MTA) and G3 (GIC) groups (p < 0.05). No statistically significant difference in microleakage was observed between G2 and G3 groups (p > 0.05). The results of this study indicate that the COP presented efficient sealing ability when used as a root-end filling material showing results significantly better than MTA and GIC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To evaluate the effect of cyclical mechanical loading on the bond strength of a fiber and a zirconia post bonded to root dentin.Materials and Methods: Forty single-rooted human teeth (maxillary incisors and canines) were sectioned, and the root canals were prepared at 12 mm. Twenty randomly seleced specimens received a quartz fiber post (FRC) (D.T. Light-Post) and 20 others received a zirconia post (ZR) (Cosmopost). The posts were resin luted (All Bond 2 + resin cement Duo-link) and each specimen was embedded in epoxy resin inside a PVC cylinder. Ten specimens with FRC post and 10 specimens with ZR post were submitted to fatigue testing (2,000,000 cycles; load: 50 N; angle of 45 degrees; frequency: 8 Hz), while the other 20 specimens were not fatigued. Thus, 4 groups were formed: G1: FRC+O cycles; G2: FRC+2,000,000 cycles; G3: ZR+O cycles; G4: ZR+2,000,000 cycles. Later, the specimens were cut perpendicular to their long axis to form 2-mm-thick disk-shaped samples (4 sections/specimen), which were submitted to the push-out test (1 mm/min). The mean bond strength values (MPa) were calculated for each tooth (n = 10) and data were submitted to statistical analysis (alpha = 0.05).Results: Two-way ANOVA revealed that the bond strength was significantly affected by mechanical cycling (p = 0.0014) and root post (p = 0.0325). The interaction was also statistically significant (p = 0.0010). Tukey's test showed that the mechanical cycling did not affect the bonding of FRC to root dentin, while fatigue impaired the bonding of zirconium to root dentin.Conclusion: (1) the bond strength of the FRC post to root dentin was not reduced after fatigue testing, whereas the bonding of the zirconia post was significantly affected by the fatigue. (2) Cyclical mechanical loading appears to damage the bond strength of the rigid post only.
Resumo:
Purpose: To evaluate the effects of the elapsed time (ET) after nonvital bleaching (NVB) and sodium ascorbate application (10%) (SAA) on the shear bond strength of dentin to ceramic.Materials and Methods: Bovine incisors were selected, internally bleached (35% carbamide peroxide) for 9 days and submitted to the following treatments (n = 10): G1, G2, G3-luting after 1, 7, and 14 days; G4, G5, and G6-luting after SAA, 1, 7, and 14 days, respectively. G7 and G8 were not bleached: G7-luting 24 hours after access cavity sealing; G8-luting 24 hours after access cavity sealing after SAA. After NVB, the vestibular dentin was exposed and flattened. The SAA was applied to the dentin (G4, G5, G6, G8) for 10 minutes, and it was then washed and dried. The dentin was etched (37% phosphoric acid), and an adhesive system (Single Bond 2) was applied. Feldspathic ceramic discs (VM7; 4-mm diameter, 3-mm thick) were luted with a dual-resin agent (RelyX ARC, 3M ESPE Dental Products, St. Paul, MN). After 24 hours, specimens were submitted to shear test on a universal testing machine. The data (MPa) were submitted to ANOVA and Dunnet's test (5%).Results: The means (+/- SD) obtained were (MPa): G1 (14 +/- 4.5), G2 (14.6 +/- 3.1), G3 (14 +/- 3.7), G4 (15.5 +/- 4.6), G5 (19.87 +/- 4.5), G6 (16.5 +/- 3.7), G7 (22.8 +/- 6.2), and G8 (18.9 +/- 5.4). SAA had a significant effect on bond strength (p = 0.0054). The effect of ET was not significant (p = 0.1519). G5 and G6 presented higher values than the other bleached groups (p < 0.05) and similar to G7 and G8 (p > 0.05).Conclusions: After NVB, adhesive luting to dentin is recommended after 7 days if sodium ascorbate has been applied prior to dentin hybridization.
Resumo:
Statement of problem. Different combinations of Co-Cr alloys bonded to ceramic have been used in dentistry; however, the bond strength of ceramic to metal can vary because of different compositions of these alloys.Purpose. The purpose of this study was to evaluate the shear bond strength of a dental ceramic to 5 commercially available Co-Cr alloys.Material and methods. Five Co-Cr alloys (IPS d.SIGN 20, IPS d.SIGN 30, Remanium 2000, Heranium P, and Wirobond C) were tested and compared to a control group of an Au-Pd alloy (Olympia). Specimen disks, 5 mm high and 4 mm in diameter, were fabricated with the lost-wax technique. Sixty specimens were prepared using opaque and dentin ceramics (VITA Omega 900), veneered, 4 mm high and 4 mm in diameter, over the metal specimens (n = 10). The shear bond strength test was performed in a universal testing machine with a crosshead speed of 0.5 mm/min. After shear bond testing, fracture surfaces were evaluated in a stereomicroscope under x25 magnification. Ultimate shear bond strength (MPa) data were analyzed with 1-way ANOVA and the Tukey HSD test (alpha = .05).Results. The mean (SID) bond strengths (MPa) were: 61.4 (7.8) for Olympia; 94.0 (18.9) for IPS 20; 96.8 (10.2) for I PS 30; 75.1 (12.4) for Remanium; 71.2 (14.3) for Heranium P; and 63.2 (10.9) for Wirobond C. Mean bond strengths for IPS 20 and IPS 30 were not significantly different, but were significantly (P<.001) higher than mean bond strengths for the other 4 alloys, which were not significantly different from each other.Conclusions. Bond strength of a dental ceramic to a Co-Cr alloy is dependent on the alloy composition.
Resumo:
Purpose:This study evaluated the microtensile bond strength of two resin cements to dentin either with their corresponding self-etching adhesives or employing the three-step etch-and-rinse technique. The null hypothesis was that the etch-and-rinse adhesive system would generate higher bond strengths than the self-etching adhesives.Materials and Methods:Thirty-two human molars were randomly divided into four groups (N = 32, n = 8/per group): G1) ED Primer self-etching adhesive + Panavia F; G2) All-Bond 2 etch-and-rinse adhesive + Panavia F; G3) Multilink primer A/B self-etching adhesive + Multilink resin cement; G4) All-Bond 2 + Multilink. After cementation of composite resin blocks (5 x 5 x 4 mm), the specimens were stored in water (37 degrees C, 24 hours), and sectioned to obtain beams (+/- 1 mm2 of adhesive area) to be submitted to microtensile test. The data were analyzed using 2-way analysis of variance and Tukey's test (alpha = 0.05).Results:Although the cement type did not significantly affect the results (p = 0.35), a significant effect of the adhesive system (p = 0.0001) was found on the bond strength results. Interaction terms were not significant (p = 0.88751). The etch-and-rinse adhesive provided significantly higher bond strength values (MPa) with both resin cements (G2: 34.4 +/- 10.6; G4: 33.0 +/- 8.9) compared to the self-etching adhesive systems (G1: 19.8 +/- 6.6; G3: 17.8 +/- 7.2) (p < 0.0001). Pretest failures were more frequent in the groups where self-etching systems were used.Conclusion:Although the cement type did not affect the results, there was a significant effect of changing the bonding strategy. The use of the three-step etch-and-rinse adhesive resulted in significantly higher bond strength for both resin cements on dentin.CLINICAL SIGNIFICANCEDual polymerized resin cements tested could deliver higher bond strength to dentin in combination with etch-and-rinse adhesive systems as opposed to their use in combination with self-etching adhesives.(J Esthet Restor Dent 22:262-269, 2010).