905 resultados para Cytoskeleton, gamma-Tubulin, Biotechnology, Protein expression
Resumo:
Endometriosis is an extremely prevalent disorder characterized by the growth of endometrial tissue at ectopic locations. Glycolysis is an energy-producing mechanism that occurs in almost all cells and requires an adequate uptake of glucose mediated by glucose transporter (GLUT) proteins. At present, however, very little is known about their expression in either the endometrium or the endometriotic lesions. The objective of this study was to examine the expression of SLC2A genes in the endometrium of women with and without endometriosis and in the matching ectopic tissue, and to confirm the presence of the GLUT proteins in ectopic lesions. There was a significantly higher expression of SLC2A3 and a significantly lower expression of SLC2A4 in women with endometriosis compared with those without. In women with endometriosis, the ectopic expression of SLC2A3, SLC2A4 and SLC2A5 was significantly higher than that observed in the matching eutopic tissue. GLUT1 protein expression was present in both epithelial and stromal cells and GLUT3 was confined to CD45-positive leukocytes. GLUT4 expression was strong in both ectopic epithelial and stromal cells and localized to the cellular membrane in epithelial cells. These results show that GLUT expression is altered between eutopic and ectopic tissue and between women with and without endometriosis, and that GLUT4 may represent a significant entry route for glucose into the endometriotic epithelial cells. The inducible nature of GLUT4 and its limited cellular expression may make GLUT4 an attractive target for non-hormone-based treatments of endometriosis.
Resumo:
Stroke is the third leading cause of death and a major debilitating disease in the United States. Multiple factors, including genetic factors, contribute to the development of the disease. Genome-wide association studies (GWAS) have contributed to the identification of genetic loci influencing risk for complex diseases, such as stroke. In 2010, a GWAS of incident stroke was performed in four large prospective cohorts from the USA and Europe and identified an association of two Single Nucleotide Polymorphisms (SNPs) on chromosome 12p13 with a greater risk of ischemic stroke in individuals of European and African-American ancestry. These SNPs are located 11 Kb upstream of the nerve injury-induced gene 2, Ninjurin2 (NINJ2), suggesting that this gene may be involved in stroke pathogenesis. NINJ2 is a cell adhesion molecule induced in the distal glial cells from a sciatic-nerve injury at 7-days after injury. In an effort to ascribe a possible role of NINJ2 in stroke, we have assessed changes in the level of gene and protein expression of NINJ2 following a time-course from a transiently induced middle cerebral artery ischemic stroke in mice brains. We report an increase in the gene expression of NINJ2 in the ischemic and peri-infarct (ipsilateral) cortical tissues at 7 and 14-days after stroke. We also report an increase in the protein expression of NINJ2 in the cortex of both the ipsilateral and contralateral cortical tissues at the same time-points. We conclude that the expression of NINJ2 is regulated by an ischemic stroke in the cortex and is consistent with NINJ2 being involved in the recovery time-points of stroke.
Resumo:
$\beta$1,4-Galactosyltransferase (GalTase) is unusual among the glycosyltransferases in that it is found in two subcellular compartments where it performs different functions. In the trans-Golgi complex, GalTase participates in oligosaccharide biosynthesis as do other glycosyltransferases. GalTase is also found on the cell surface, where it associates with the cytoskeleton and functions as a receptor for extracellular oligosaccharide ligands. Although we know much regarding GalTase function on the cell surface, little is known about the mechanisms underlying its transport to the plasma membrane. Cloning of the GalTase gene revealed that there are two GalTase proteins (i.e., long and short) with different size cytoplasmic tails. This raises the possibility that differences in the cytoplasmic domain of GalTase may influence its subcellular distribution. The object of this study was to examine this hypothesis directly through the use of molecular, immunological, and biochemical approaches.^ To examine whether the two GalTase proteins are targeted to different subcellular compartments, F9 embryonal carcinoma cells were transfected with either long or short GalTase cDNAs and intracellular and cell surface enzyme levels measured. Cell surface GalTase activity was enriched in cells overexpressing the long, but not the form of short GalTase. Furthermore, a dominant negative mutation in cell surface GalTase was created by transfecting cells with GalTase cDNAs encoding a truncated version of long GalTase devoid of the extracellular catalytic domain. Overexpressing the complete cytoplasmic and transmembrane domains of long GalTase led to a loss of GalTase-dependent cellular adhesion by specifically displacing surface GalTase from its cytoskeletal associations. In contrast, overexpressing the analogous truncated protein of short GalTase had no effect on cell adhesion. Finally, chloramphenicol acetyltransferase (CAT) reporter proteins were used to determine directly whether the cytoplasmic domains of long and short GalTase were responsible for differential subcellular distribution. The cytoplasmic and transmembrane domains of long GalTase led to CAT expression on the ceil surface and its association with the detergent-insoluble cytoskeleton; the analogous fusion protein containing short GalTase was restricted to the Golgi compartment. These results suggest that the cytoplasmic domain unique to long GalTase is responsible for targeting a portion of this protein to the cell surface and associating it with the cytoskeleton, enabling it to function as a cell adhesion molecule. ^
Resumo:
In our studies we have focused on the issue of variability and diversity of the $\gamma$ (or $\delta)$ chain T cell receptor (TCR) genes by studying cDNA transcripts in peripheral blood mononuclear cells or $\gamma\delta$ TCR+ T cell clones. The significance of these studies lies in the better understanding of the molecular biology of the $\gamma\delta$ T cell receptor as well as in answering the question whether certain molecular forms predominate in $\gamma\delta$ T cells exhibiting specific immunologic functions. We establish that certain $\gamma$-chain TCR genes exhibit particular patterns of rearrangements in cDNA transcripts in normal individuals. V$\gamma$I subgroup were shown to preferentially rearrange to J$\gamma$2C$\gamma$2 gene segments. These preferential VJC rearrangements, may have implications regarding the potential for diversity and polymorphism of the $\gamma$-chain TCR gene. In addition, the preferential association of V$\gamma$I genes with J$\gamma$2C$\gamma$2, which encode a non-disulfide-linked $\gamma\delta$ TCR, suggests that $\gamma$ chains utilizing V$\gamma$I are predominantly expressed as non-disulfide-linked $\gamma\delta$ TCR heterodimers. The implications of this type of expression remain to be determined. We identified two alternative splicing events of the $\gamma$-chain TCR genes occurring in high frequency in all the normal individuals examined. These events may suggest additional mechanisms of regulation and control as well as diversification of $\gamma\delta$ TCR gene expression. The question whether particular forms of $\gamma$ or $\delta$-chain TCR genes are involved in HLA Class I recognition by specific $\gamma\delta$ cytotoxic T cell clones was addressed. Our results indicated that the T cell clones expressed identical $\gamma$ but distinct $\delta$-chains suggesting that the specificity for recognition of HLA-A2 or HLA-A3 may be conferred by the $\delta$-chain TCR. The issue of the degree of diversity and polymorphism of the $\delta$-chain TCR genes in a patient with a primary immunodeficiency (Omenn's syndrome) was addressed. A limited pattern of rearrangements in peripheral blood transcripts was found, suggesting that a limited $\gamma\delta$ TCR repertoire may be expressed in this particular primary immunodeficiency syndrome. Overall, our findings suggest that $\delta$-chain TCR genes exhibit the potential for significant diversity and that there are certain preferential patterns of expression that may be associated with particular immunologic functions. ^
Resumo:
BACKGROUND In Parkinson's disease (PD), bradykinesia, or slowness of movement, only appears after a large striatal dopamine depletion. Compensatory mechanisms probably play a role in this delayed appearance of symptoms. OBJECTIVE Our hypothesis is that the striatal direct and indirect pathways participate in these compensatory mechanisms. METHODS We used the unilateral 6-hydroxydopamine (6-OHDA) rat model of PD and control animals. Four weeks after the lesion, the spontaneous locomotor activity of the rats was measured and then the animals were killed and their brain extracted. We quantified the mRNA expression of markers of the striatal direct and indirect pathways as well as the nigral expression of dopamine transporter (DAT) and tyrosine hydroxylase (TH) mRNA. We also carried out an immunohistochemistry for the striatal TH protein expression. RESULTS As expected, the unilateral 6-OHDA rats presented a tendency to an ipsilateral head turning and a low locomotor velocity. In 6-OHDA rats only, we observed a significant and positive correlation between locomotor velocity and both D1-class dopamine receptor (D1R) (direct pathway) and enkephalin (ENK) (indirect pathway) mRNA in the lesioned striatum, as well as between D1R and ENK mRNA. CONCLUSIONS Our results demonstrate a strong relationship between both direct and indirect pathways and spontaneous locomotor activity in the parkinsonian rat model. We suggest a synergy between both pathways which could play a role in compensatory mechanisms and may contribute to the delayed appearance of bradykinesia in PD.
Resumo:
OBJECTIVE To assess the expression and regulation of antilipoprotein D (ApoD) and antilipoprotein E (ApoE) in human endometrium. STUDY DESIGN Endometrial biopsies from healthy, regularly cycling women were collected during the late proliferative and mid-secretory phase. mRNA gene expression of ApoD and ApoE was determined using real-time PCR in whole tissue, in isolated stromal (ESC), epithelial (EEC) and CD45(+) leukocytes (EIC), as well as after hormonal stimulation of ESC and EEC in vitro. Protein expression was analyzed using immunohistochemistry. RESULTS ApoD and ApoE mRNA was expressed in all cell types examined. A rise in ApoD mRNA expression was seen in whole endometrium, ESC, and EEC in the secretory phase, as well as after hormonal stimulation of ESC and EEC in vitro. ApoE mRNA was significantly upregulated in whole endometrium of secretory phase biopsies, while its expression was not altered by progesterone in vitro. Immunohistochemistry of whole endometrial tissue localized ApoD mainly in ESC and EEC. While ApoE was localized slightly in ESC, it was particularly noted on the surface of secretory phase endothelial cells. CONCLUSION We demonstrate for the first time the cell-type and cycle dependent expression of ApoD and ApoE within human endometrium, suggesting their role in endometrial modulation.
Resumo:
Objective: The aim of the study was to compare the neuroglial phenotype of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC) from pregnancies complicated with preeclampsia and gestational age (GA)-matched controls. Methods: WJ-MSC were isolated from umbilical cords from both groups and analyzed for the cell surface expression of MSC markers and the gene and protein expression of neuroglial markers. Results: All WJ cells were highly positive for the MSC markers CD105, CD90 and CD73, but negative for markers specific for hematopoietic (CD34) and immunological cells (CD45, CD14, CD19 and HLA-DR). WJ-MSC from both groups expressed neuroglial markers (MAP-2, GFAP, MBP, Musashi-1 and Nestin) at the mRNA and protein level. The protein expressions of neuronal (MAP-2) and oligodendrocytic (MBP) markers were significantly increased in WJ-MSC from preeclampsia versus GA-matched controls. Conclusions: WJ-MSC from preeclamptic patients are possibly more committed to neuroglial differentiation through the activation of pathways involved both in the pathophysiology of the disease and in neurogenesis.
Resumo:
PURPOSE FGFR3 is considered a good therapeutic target for bladder cancer. However, to our knowledge it is unknown whether the FGFR3 status of primary tumors is a surrogate for related metastases, which must be targeted by FGFR targeted systemic therapies. We assessed FGFR3 protein expression in primary bladder tumors and matched nodal metastases. MATERIALS AND METHODS We examined matched primary tumor and nodal metastases from 150 patients with bladder cancer clinically staged as N0M0. Four samples per patient were incorporated into a tissue microarray and FGFR3 expression was assessed by immunohistochemistry. FGFR3 expression was tested for an association with categorical clinical data using the Fisher exact test, and with overall and recurrence-free survival by Kaplan-Meier analysis. RESULTS Duplicate spots from primary tumors and lymph node metastases were highly concordant (OR 8.6 and 16.7, respectively, each p <0.001). Overall FGFR protein expression levels did not differ between primary and metastatic lesions (p = 0.78). Up-regulated expression was recorded in 53 of 106 evaluable primary tumor spots and 56 matched metastases. Concordance of FGFR3 expression levels in 79 matched primary tumor and metastasis specimens was high (OR 8.45, p <0.001). In 15 and 12 patients expression was up-regulated in only metastasis and in only the primary tumor, respectively. Overall and recurrence-free survival was not related to FGFR3 expression. CONCLUSIONS FGFR3 expression in matched primary and metastasized bladder cancer specimens showed good but not absolute concordance. Thus, in most patients primary tumor FGFR3 status can guide the selection of FGFR targeted therapy.
Resumo:
Her2 overexpression and amplification can be found in a significant subset of esophageal adenocarcinomas. The activity of Her2 has been shown to be modulated by molecular chaperones such as HSP90. We analyzed expression/amplification data for HSP90 and Her2 on 127 primary resected esophageal adenocarcinomas in order to evaluate a possible relationship between these two molecules. HSP90 expression determined by immunohistochemistry was observed in various levels. Thirty nine (39) tumors (30.7%) were classified as Her2-positive according to their immunoreactivity and amplification status. There was a significant correlation between HSP90 expression and Her2-status (p = 0.008). This could also be demonstrated by quantitative protein expression analysis with reverse phase protein arrays (r = 0.9; p < 0.001). Her2-status was associated withpT-category (p = 0.041), lymph node metastases (p = 0.049) and tumor differentiation (p = 0.036) with a higher percentage of cases with negative Her2 status in lower tumor stagesA negative Her2-status was also associated with better survival in univariate and multivariate analysis (p = 0.001 and p = 0.014). For HSP90, no associations between clinical and pathological parameters were found. The observed association between HSP90 expression and Her2 suggests a co-regulation of these molecules in at least a subset of esophageal adenocarcinomas. Anti-HSP90 drugs, which recently have been introduced in cancer treatment, may also be an option for these tumors by targeting HSP90 alone or in combination with Her2.
Resumo:
BACKGROUND Membrane-associated guanylate kinase (MAGUK) proteins are important determinants of ion channel organization in the plasma membrane. In the heart, the MAGUK protein SAP97, encoded by the DLG1 gene, interacts with several ion channels via their PDZ domain-binding motif and regulates their function and localization. OBJECTIVE The purpose of this study was to assess in vivo the role of SAP97 in the heart by generating a genetically modified mouse model in which SAP97 is suppressed exclusively in cardiomyocytes. METHODS SAP97(fl/fl) mice were generated by inserting loxP sequences flanking exons 1-3 of the SAP97 gene. SAP97(fl/fl) mice were crossed with αMHC-Cre mice to generate αMHC-Cre/SAP97(fl/fl) mice, thus resulting in a cardiomyocyte-specific deletion of SAP97. Quantitative reverse transcriptase-polymerase chain reaction, western blots, and immunostaining were performed to measure mRNA and protein expression levels, and ion channel localization. The patch-clamp technique was used to record ion currents and action potentials. Echocardiography and surface ECGs were performed on anesthetized mice. RESULTS Action potential duration was greatly prolonged in αMHC-Cre/SAP97(fl/fl) cardiomyocytes compared to SAP97(fl/fl) controls, but maximal upstroke velocity was unchanged. This was consistent with the decreases observed in IK1, Ito, and IKur potassium currents and the absence of effect on the sodium current INa. Surface ECG revealed an increased corrected QT interval in αMHC-Cre/SAP97(fl/fl) mice. CONCLUSION These data suggest that ablation of SAP97 in the mouse heart mainly alters potassium channel function. Based on the important role of SAP97 in regulating the QT interval, DLG1 may be a susceptibility gene to be investigated in patients with congenital long QT syndrome.
Resumo:
Placental Glucose Transporter (GLUT1) Expression in Pre- Eclampsia. INTRODUCTION: Glucose is the most important substrate for fetal growth. Indeed, there is no significant de novo glucose synthesis in the fetus and the fetal up-take of glucose rely on maternal supply and transplacental transport. Therefore, a defective placental transporter system may affect the intrauterine environment compromising fetal as well as mother well-being. On this line, we speculated that the placental glucose transport system could be impaired in pre-eclampsia (PE). METHODS: Placentae were obtained after elective caesarean sections following normal pregnancies and pre-eclamptic pregnancies. Syncytial basal membrane (BM) and apical microvillus membrane (MVM) fractions were prepared using differential ultra-centrifugation and magnesium precipitation. Protein expression was assessed by western blot. mRNA levels were quantified by quantitative real-time PCR. A radiolabeled substrate up-take assay was established to assess glucose transport activity. FACS analysis was performed to check the shape of MVM. Statistical analysis was performed using one way ANOVA test. RESULTS: GLUT1 protein levels were down-regulated (70%; P<0.01) in pre-eclamptic placentae when compared to control placentae. This data is in line with the reduced glucose up-take in MVM prepared from preeclamptic placentae. Of note, the mRNA levels of GLUT1 did not change between placentae affected by PE and normal placentae, suggesting that the levels of GLUT1 are post-transcriptionally regulated. FACS analysis on MVM vesicles from both normal placentae and pre-eclamptic placentae showed equal heterogeneity in the complexes formed. This excluded the possibility that the altered glucose up-take observed in pre-eclamptic MVM was caused by a different shape of these vesicles. CONCLUSIONS: Protein and functional studies of GLUT1 in MVM suggest that in pre-eclampsia the glucose transport between mother and fetus might be defective. To further investigate this important biological aspect we will increase the number of samples obtained from patients and use primary cells to study trans epithelial transport system in vitro.
Resumo:
Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation.
Resumo:
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is mainly an autosomal dominant disease characterized by fibrofatty infiltration of the right ventricle, leading to ventricular arrhythmias. Mutations in desmosomal proteins can be identified in about half of the patients. The pathogenic mechanisms leading to disease expression remain unclear. OBJECTIVE The purpose of this study was to investigate myocardial expression profiles of candidate molecules involved in the pathogenesis of ARVC/D. METHODS Myocardial messenger RNA (mRNA) expression of 62 junctional molecules, 5 cardiac ion channel molecules, 8 structural molecules, 4 apoptotic molecules, and 6 adipogenic molecules was studied. The averaged expression of candidate mRNAs was compared between ARVC/D samples (n = 10), nonfamilial dilated cardiomyopathy (DCM) samples (n = 10), and healthy control samples (n = 8). Immunohistochemistry and quantitative protein expression analysis were performed. Genetic analysis using next generation sequencing was performed in all patients with ARVC/D. RESULTS Following mRNA levels were significantly increased in patients with ARVC/D compared to those with DCM and healthy controls: phospholamban (P ≤ .001 vs DCM; P ≤ .001 vs controls), healthy tumor protein 53 apoptosis effector (P = .001 vs DCM; P ≤ .001 vs controls), and carnitine palmitoyltransferase 1β (P ≤ .001 vs DCM; P = 0.008 vs controls). Plakophillin-2 (PKP-2) mRNA was downregulated in patients with ARVC/D with PKP-2 mutations compared with patients with ARVC/D without PKP-2 mutations (P = .04). Immunohistochemistry revealed significantly increased protein expression of phospholamban, tumor protein 53 apoptosis effector, and carnitine palmitoyltransferase 1β in patients with ARVC/D and decreased PKP-2 expression in patients with ARVC/D carrying a PKP-2 mutation. CONCLUSION Changes in the expression profiles of sarcolemmal calcium channel regulation, apoptosis, and adipogenesis suggest that these molecular pathways may play a critical role in the pathogenesis of ARVC/D, independent of the underlying genetic mutations.
Resumo:
Transforming growth factor β2 (TGF-β2) is well known to stimulate the expression of pro-fibrotic connective tissue growth factor (CTGF) in several cell types including human mesangial cells. The present study demonstrates that TGF-β2 enhances sphingosine 1-phosphate receptor 5 (S1P5) mRNA and protein expression in a time and concentration dependent manner. Pharmacological and siRNA approaches reveal that this upregulation is mediated via activation of classical TGF-β downstream effectors, Smad and mitogen-activated protein kinases. Most notably, inhibition of Gi with pertussis toxin and downregulation of S1P5 by siRNA block TGF-β2-stimulated upregulation of CTGF, demonstrating that Gi coupled S1P5 is necessary for TGF-β2-triggered expression of CTGF in human mesangial cells. Overall, these findings indicate that TGF-β2 dependent upregulation of S1P5 is required for the induction of pro-fibrotic CTGF by TGF-β. Targeting S1P5 might be an attractive novel approach to treat renal fibrotic diseases.
Resumo:
Acute vascular rejection (AVR), in particular microvascular thrombosis, is an important barrier to successful pig-to-primate xenotransplantation. Here, we report the generation of pigs with decreased tissue factor (TF) levels induced by small interfering (si)RNA-mediated gene silencing. Porcine fibroblasts were transfected with TF-targeting small hairpin (sh)RNA and used for somatic cell nuclear transfer. Offspring were analyzed for siRNA, TF mRNA and TF protein level. Functionality of TF downregulation was investigated by a whole blood clotting test and a flow chamber assay. TF siRNA was expressed in all twelve liveborn piglets. TF mRNA expression was reduced by 94.1 ± 4.7% in TF knockdown (TFkd) fibroblasts compared to wild-type (WT). TF protein expression in PAEC stimulated with 50 ng/mL TNF-α was significantly lower in TFkd pigs (mean fluorescence intensity TFkd: 7136 ± 136 vs. WT: 13 038 ± 1672). TF downregulation significantly increased clotting time (TFkd: 73.3 ± 8.8 min, WT: 45.8 ± 7.7 min, p < 0.0001) and significantly decreased thrombus formation compared to WT (mean thrombus coverage per viewing field in %; WT: 23.5 ± 13.0, TFkd: 2.6 ± 3.7, p < 0.0001). Our data show that a functional knockdown of TF is compatible with normal development and survival of pigs. TF knockdown could be a valuable component in the generation of multi-transgenic pigs for xenotransplantation.