924 resultados para Curaua fiber
Resumo:
The theoretical investigation of the coupling efficiency of a laser diode to a single mode fiber via a hemispherical lens on the tip of the tapered fiber in the presence of possible transverse offset and angular mismatch is reported.Without the misalignment,coupling efficiency increases with the decreasing of taper length.With the misalignment,this relation is that the coupling efficiency decreases with each kind of offset.
Resumo:
Based on a set of microoptics the output radiation from a continuous wave (CW) linear laser diode array is coupled into a multi-mode optical fiber of 400 ptm diameter. The CW linear laser diode array is a 1 cm laser diode bar with 19 stripes with 100 fxm aperture spaced on 500 (xm centers. The coupling system contains packaged laser diode bar, fast axis collimator, slow axis collimation array, beam transformation system and focusing system. The high brightness, high power density and single fiber output of a laser diode bar is achieved. The coupling efficiency is 65% and the power density is up to 1.03 * 10~4 W/cm~2.
Resumo:
A piece of multimode optical fiber with a low numerical aperture (NA) is used as an inexpensive microlens to collimate the output radiation of a laser diode bar in the high numerical aperture (NA) direction. The emissions of the laser diode bar are coupled into multimode fiber array. The radiation from individual ones of emitter regions is optically coupled into individual ones of fiber array. Total coupling efficiency and fiber output power are 75% and 15W, respectively.
Resumo:
Resumo:
Planar punch through heterojunction phototransistors with a novel emitter control electrode and ion- implanted isolation (CE-PTHPT) are investigated. The phototransistors have a working voltage of 3-10V and high sensitivity at low input power. The base of the transistor is completely depleted under operating condition. Base current is zero. The CE-PTHPT has an increased speed and a decreased noise. The novel CE-PTHPT has been fabricated in this paper. The optical gain of GaAlAs/GaAs CE-PTHPT for the incident light power 1.3 and 43nw with the wavelength of 0.8 mu m reached 1260 and 8108. The input noise current calculated is 5.46 x 10(-16) A/H-z(1/2). For polysilicon emitter CE-PTHPT, the optical gain is 3083 at the input power of 0.174 mu w. The optical gain of InGaAs/InP CE-PTHPT reaches 350 for an incident power of 0.3 mu w at the wavelength of 1.55 mu m. The CE-PTHPT detectors is promising as photo detectors for optical fiber communication system.
Resumo:
Si-based SiGe/Si strained MQW long-wavelength photodetectors (PD) with cycle type (Ring Shape) waveguide (CWG) and resonant-cavity-enhanced (RCE) structure have been investigated for the first time for improving the quantum efficiency and response time. The results show that the responsivities are higher than that of conventional PD with a same Ge content reported previously. In addition, RCE-PD has an obvious narrow band response with FWHM less than 6nm.
Resumo:
Electroabsorption (EA) modulator integrated with partially gain coupling distributed feedback (DFB) lasers have been fabricated and shown high single mode yield and wavelength stability. The small signal bandwidth is about 7.5 GHz. Strained Si1-chiGechi/Si multiple quantum well (MQW) resonant-cavity enhanced (RCE) photodetectors with SiO2/Si distributed Bragg reflector (DBR) as the mirrors have been fabricated and shown a clear narrow bandwidth response. The external quantum efficiency at 1.3 mum is measured to be about 3.5% under reverse bias of 16 V. A novel GaInNAs/GaAs MQW RCE p-i-n photodetector with high reflectance GaAs/ALAs DBR mirrors has also been demonstrated and shown the selectively detecting function with the FWHM of peak response of 12 nm.
Resumo:
A novel crosslinkable polyurethane is used as the core layer of the electro-optic(E-O) modulator. The refractive index and dispersion of this material have been detected by analyzing the F-P oscillation in transmission spectra. Calculated results from the effective index method are given to design the Mach-Zehnder and straight 5-layer ridge wave-guide device (including the metal electrodes). With light at 1.31 mum being fiber coupled into waveguide, the mode properties of these devices have been demonstrated in a micron control system. The guided mode is accordant with the theoretical analysis.
Resumo:
In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this contribution we report the research and development of 1.55 mu m InGaAsP/InP gain-coupled DFB laser with an improved injection-carrier induced grating and of high performance 1.3 mu m and 1.55 mu m InGaAsP/InP FP and DFB lasers for communications. Long wavelength strained MQW laser diodes with a very low threshold current (7-10 mA) have been fabricated. Low pressure MOVPE technology has been employed for the preparation of the layered structure. A novel gain-coupled DFB laser structure with an improved injection-carrier modulated grating has been proposed and fabricated. The laser structures have been prepared by hybrid growth of MOVPE and LPE techniques and reasonably good characteristics have been achieved for resultant lasers. High performance 1.3 mu m and 1.55 mu m InGaAsP/InP DFB lasers have successfully been developed for CATV and trunk line optical fiber communication.
Resumo:
We analyze theoretically the polarization characteristics of polarization maintaining fiber and study the basic measurement principles of beat length and polarization extinction ratio of this kind of optical fiber. According, to the dependence of the phase difference between two orthogonally polarized modes (denoted Os HE(11)(x) and HE(11)(y)) transmitted in the polarization maintaining fiber on the light wavelength, we propose the wavelength-sweeping modulation method to measure the beat length and the model birefringence. Based on this technique, the hew length and polarization extinction ratio of the PANDA polarization maintaining fibers (PMFs) (provided by Yangtze Optical Fiber and Cable Company, Wuhan, China) were investigated in detail. Experimental results show good consistent with the theoretical ones. We find that this method shows high measurement precision with the advantages of clear measurement principle and easy to operate. 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52: 1466-1469, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25244
Resumo:
We have proposed a novel type of photonic crystal fiber (PCF) with low dispersion and high nonlinearity for four-wave mixing. This type of fiber is composed of a solid silica core and a cladding with a squeezed hexagonal lattice elliptical airhole along the fiber length. Its dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method. Numerical results show that the proposed highly nonlinear low-dispersion fiber has a total dispersion as low as +/- 2.5 ps nm(-1) km(-1) over an ultrabroad wavelength range from 1.43 to 1.8 mu m, and the corresponding nonlinearity coefficient and birefringence are about 150 W-1 km(-1) and 2.5 x 10(-3) at 1.55 mu m, respectively. The proposed PCF with low ultraflattened dispersion, high nonlinearity, and high birefringence can have important application in four-wave mixing. (C) 2010 Optical Society of America
Resumo:
We propose a simple approach to generate a high quality 10 GHz 1.9 ps optical pulse train using a semiconductor optical amplifier and silica-based highly nonlinear fiber. An optical pulse generator based on our proposed scheme is easy to set up with commercially available optical components. A 10 GHz, 1.9 ps optical pulse train is obtained with timing jitter as low as 60 fs over the frequency range 10 Hz-1 MHz. With a wavelength tunable CW laser, a wide wavelength tunable span can be achieved over the entire C band. The proposed optical pulse generator also can operate at different repetition rates from 3 to 10 GHz.