970 resultados para Covariance estimate
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
As medições e estimativas dos componentes do balanço de energia foram feitos acima da copa das árvores no ecossistema de manguezal natural, localizada a 30 km da cidade de Bragança-PA, entre novembro de 2002 e agosto de 2003. Os dados foram utilizados para a análise das variações sazonais e horárias do fluxo de calor sensível e calor latente, bem como a avaliação da partição de energia. Os dados meteorológicos foram coletados pela estação meteorológica automática (EMA) e os fluxos foram calculados utilizando-se a técnica de covariância de vórtices turbulentos. Os modelos de Penman-Monteith e Shuttleworth foram usados para estimar o fluxo de calor sensível e calor latente. O objetivo deste estudo foi analisar o equilíbrio e a partição de energia no manguezal, assim como fazer uma avaliação do comportamento de modelos empíricos para estimar os fluxos de energia. O saldo de radiação apresentou valores mais elevados no período menos chuvoso. A razão de Bowen mostrou valor geralmente baixo, o que indica que uma proporção maior de energia foi utilizada sob a forma de calor latente. O modelo Shuttleworth é mais eficiente na estimativa de fluxos de calor sensível. Para estimar o fluxo de calor latente do modelo de Penman-Monteith foi mais eficiente durante a estação seca e o modelo Shuttleworth durante a estação chuvosa.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to estimate genetic, environmental and phenotypic correlation between birth weight (BW) and weight at 205 days age (W205), BW and weight at 365 days age (W365) and W205-W365, using Bayesian inference. The Brazilian Program for Genetic Improvement of Buffaloes provided the data that included 3,883 observations from Mediterranean breed buffaloes. With the purpose to estimate variance and covariance, bivariate analyses were performed using Gibbs sampler that is included in the MTGSAM software. The model for BW, W205 and W365 included additive direct and maternal genetic random effects, maternal environmental random effect and contemporary group as fixed effect. The convergence diagnosis was achieved using Geweke, a method that uses an algorithm implemented in R software through the package Bayesian Output Analysis. The calculated direct genetic correlations were 0.34 (BW-W205), 0.25 (BW-W365) and 0.74 (W205-W365). The environmental correlations were 0.12, 0.11 and 0.72 between BW-W205, BW-W365 and W205-W365, respectively. The phenotypic correlations were low for BW-W205 (0.01) and BW-W365 (0.04), differently than the obtained for W205-W365 with a value of 0.67. The results indicate that BW trait have low genetic, environmental and phenotypic association with the two others traits. The genetic correlation between W205 and W365 was high and suggests that the selection for weight at around 205 days could be beneficial to accelerate the genetic gain.
Resumo:
Major objective of this study was to estimate heritability and genetic correlations between milk yield (MY) and calving interval (CI) and lactation length (LL) in Murrah buffaloes using Bayesian inference. The database used belongs to the genetic improvement program of four buffalo herds from Brazil. To obtain the estimates of variance and covariance, bivariate analyses were performed with the Gibbs sampler, using the program MTGSAM. The heritability coefficient estimates were 0.28, 0.03 and 0.15 for MY, CI and LL, respectively. The genetic correlations between MY and LL was moderate (0.48). However, the genetic correlation between MY and CI showed large HPD regions (highest posterior density interval). Milk yield was the only trait with clear potential for genetic improvement by direct mass selection. The genetic correlation between MY-LL indicates that indirect selection using milk yield is a potentially beneficial strategy. The interpretation of the estimated genetic correlation between MY-CI is difficult and could be spurious.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study is to describe the development of a model to predict the digestible lysine requirements of broilers using the factorial approach, and to evaluate the model using as reference the model presented in Brazilian Tables for Poultry and Swine. The model partitions the requirement for maintenance and growth for feather-free body protein and feather protein, in which the inputs are body and feather protein weight and the daily rates of protein deposition in the feather-free body and feathers. The parameters that express the lysine requirement for maintenance were obtained in metabolism trials with roosters, and those for the efficiency of lysine utilization in experiments with broilers from 1 to 42 d. Based on these results the model proposed was: Lys (mg/d) = [(151xBP(m)(-0.27)xBP(t)) + (0.01xP(t)x18)] + [(75xBPD/0.77) + (18xFPD/0.77)], where Lys = digestible lysine requirement (mg/d), BPm=body protein weight at maturity (kg), BPt=body protein weight at time t (kg), FPt=feather protein weight at time t (kg), BPD=body protein deposition (g/d), FPD = feather protein deposition (g/d). The model yields sensible predictions of the digestible lysine requirements of broilers of different strains and ages growing at their potential, and suggests a lower lysine requirement after 27 d than does the Brazilian model. The proposed model is the first step in the development of a simulation model that predicts the food intake of a broiler and hence the dietary amino acid content that would optimise performance.